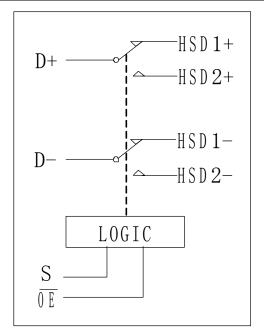


一、概述

MSUSB30 是一款高速、低功耗双刀双掷 USB 模拟开关芯片,其工作电压范围是+1.8V 至+4.3V。其具有低的码间偏移、高的通道噪声隔离度、大带宽特性。D+/D-端口具有+5.25V 故障保护,可防止开关与 USB 总线电源短路时损坏器件。

主要应用范围包括:具有 USB2.0 接口的手持设备和消费电子如手机、数码相机、笔记本电脑等。

- 特点
- 1) 3V下导通电阻典型值为4.5Ω
- 2) 码间偏移典型值为50ps
- 3) 低工作电压: +1.8V 至 +4.3V
- 4) 开关速度快: 开启时间: 10ns 关断时间: 22ns
- 5) 在250MHz下串扰为-41dB
- 6) 当V+=0V时, D+/D-端口可以承受 5.25V的掉电保护
- 7) 在250MHz下通道隔离度为-41dB
- 8) 轨对轨输入输出工作范围
- 9) 工业级温度范围
- 10) MSOP-10封装



• 管脚说明

管脚序号	名称	管脚说明
10	V+	电源
5	GND	地
1	S	选择端
9	0E	输出使能
2, 3, 8, 7, 4, 6	HSD1+, HSD2+, HSD1-, HSD2-,	数据端
	D+, D-	

• 功能方框图

• 功能表

OE	S	HSD1+	HSD2+
OE		HSD1-	HSD2-
0	0	开启	关断
0	1	关断	开启
1	X	关断	关断

二、特性

• 极限参数

输入、电源电压范围-0V 至+4.6V模拟、数字电压范围-0V 至+4.6V数据端最大电流±100mA数据端最大峰值电流±100mA

工作温度范围 -40℃ 至 +85℃

最大结温 +150℃

储存温度范围 -65℃ 至 +150℃

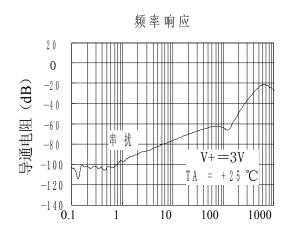
最大引线温度(焊接, 10s) +260℃

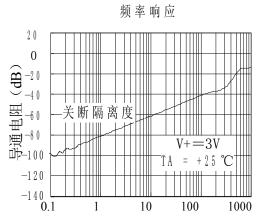
ESD 电压:

人体模式4000V机器模式400V

• 电学参数

(V+=+1.8V 至 +4.3V, GND=0V, VIH=+1.6V, VIL=+0.5V, TA=-40℃至+ 85℃。典型值在 V+=+3.3V, TA=+25℃,其它情况见注)


A. 1114	<i>L</i>	-	NH -3		n		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
参数	符号	条件	温度℃	最小	典型	最大	单位
	T	模拟开关				1	
模拟输入输 出电压	Vis		-40~85	0		V+	V
导通电阻	Ron	测试电路 1, V+=3.0V, Vis=0~0.4V, ID=8mA	+25 -40~85		4.5	8.5 9	Ω
通道间导通电阻的匹配	ΔRON	同上	+25 -40~85		0.15	0.6	Ω
导通电阻平 坦度	RFLAT(ON)	测试电路 1, V+=3.0V, Vis=0~1.0V, ID=8mA	+25 -40~85		1.5	2.0	Ω
断电漏电流 (D+,D-)	IOFF	$V+ = 0V, V_D = 0 \sim 3.6 V,$ $V_{S}, V_{OE} = 0 \implies 3.6 V$	-40~85			1	uA
不同控制电 压下 的 ICC 电流 增量	Ісст	V+=3.6V, Vs, Voe =2.6 V	-40~85			5	uA
端口断开漏 电流	IHSD2(OFF) IHSD1(OFF)	V+=3.6V, $V_{IS} = 3.3V/0.3V$, $V_{D}=0.3V/3.3V$	-40~85			1	uA
导通漏电流	IHSD2(ON) IHSD1(ON)	V+=3.6V, VIS = 3.3V/ 0.3V, VD= 3.3V/ 0.3V 或悬空	-40~85			1	uA
		数字输入					
输入高电平	Vih		-4 0~85	1.6			V
输入低电平	VIL		-40~85			0.5	V
输入漏电流	Iin	V+=3.0V, Vs,VoE=0 或 V+	-40~85			1	uA
动态参数							
开启时间	tON	测试电路 2, Vis = 0.8V, RL = 50Ω,	+25		10		ns
关断时间	tOFF	CL = 10pF	+25		22		ns
先断后通时 间	tD	测试电路 3, $V_{IS}=0.8V, R_{L}=50\Omega,$ $C_{L}=10pF$	+25		4		ns

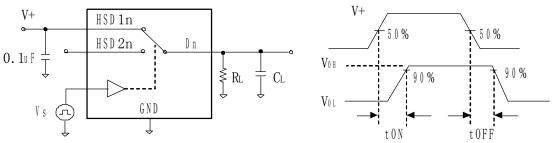

⅔ 瑞 盟 科 技

高速 USB2.0 双刀双掷模拟开关电路

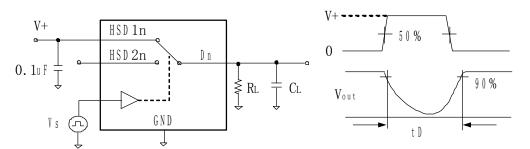
			HIAT CODE		<u> </u>	***/ //	
传输延时	tPD	$RL = 50\Omega$, $CL = 10pF$	+25		0.3		ns
关断隔离度		测试电路 4, 信号幅					
	Oiso	度 0dBm,RL = 50Ω ,	+25		-35		dB
		f = 250MHz					
		测试电路 5, 信号幅					
通道隔串扰	XTALK	度 $0dBm,RL = 50\Omega$,	+25		-41		dB
		f = 250MHz					
		测试电路 6, 信号幅					
-3dB 带宽	BW	度 $0dBm,RL = 50\Omega$,	+25	550	550		MHz
		CL = 5pF					
通道间偏差	tskew	$RL = 50\Omega$, $CL = 10pF$	+25				ns
选择端到公		测试电路 7,					
用I/O端的		$V_G = GND, C_L =$	+25			11	-C
电荷注入	Q	1.0 nF, RG = 0Ω ,	+23		11	pC	
电闸往八		$Q = C_L x*V_{OUT}$					
HSD, HSD-,							
D+, D-	Con		+25				pF
导通电容							
功耗参数							
电源电压	V+		-4 0~85	1.8		4.3	V
由法	I+	V+=3.0V,	-40~85			1	
电流		VS, VOE = 0V 或 V+	-40°~05			1	uA

• 典型性能曲线

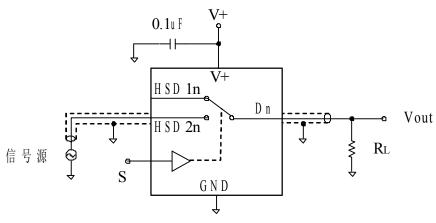
三、测试电路


8m A

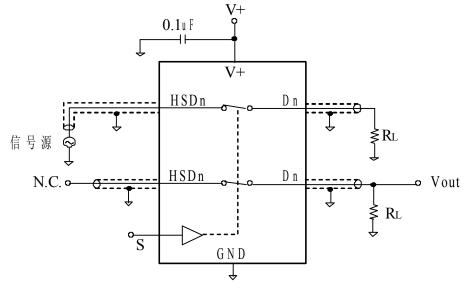
V1


HSDn Dn

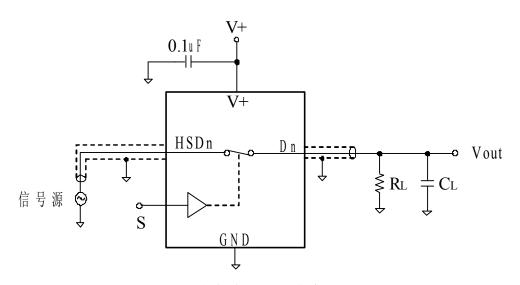
 ${\rm Ron} = {\rm V1/8m~A}$ GND

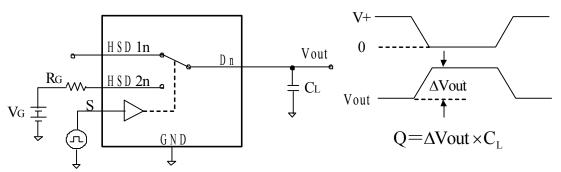

测试电路1.导通电阻

测试电路2. 开关时间



测试电路 3. 先断后通时间t D


测试电路4. 关断隔离度



通道间串扰
$$=-20 imes \log rac{V_{\mathit{HSDn}}}{V_{\mathit{out}}}$$

测试电路4.通道间串扰

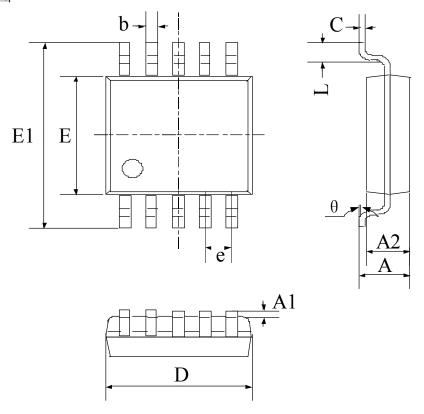
测试电路 6. -3d B 带宽

测试电路7. 电荷注入 (Q)

四、应用指南

1) 符合 USB 2.0 Vbus 短路要求 USB 2.0 规范的第 7.1.1 节中规定, USB 装置必须在断电或通电时能够承受 Vbus 与 D+或 D-之间的短接。MSUSB30 可被成功设置以完全满足上述两个要求。

2) 断电保护


对于 Vbus 短接电路, 预期在这种条件下, 开关至少可以承受 24 小时。MSUSB30 具有专门设计的电路, 可防止意外信号通过, 同时可在欠压及过压条件下保证系统的可靠性。该保护电路已经被添加至共用端口(D+, D-)。

3) 上电保护

USB 2.0 规范同时还规定,USB 装置能够承受传输数据时的 Vbus 短接。在发生过压时,此改进可限制流回至 VCC 干线的电流,使电流保持在安全工作范围之内。 在此应用中,开关可将 5.25V 的输入信号传输至选定输出,而未选定的引脚保持规定的断开隔离状态。

五、封装图

か : ロ.	尺寸 (mm)			
符号	最小值	最大值		
A	0.800	1.200		
A1	0.000	0.200		
A2	0.760	0.970		
b	0.30 TYP			
c	0.152 TYP			
D	2.900	3.100		
e	0.50 TYP			
Е	2.900	3.100		
E1	4.700	5.100		
L	0.410	0.650		
θ	0° 6°			