

NS4258 5.0W 双声道 AB/D 类双模音频功率放大器附加 NCN 模式

1 特性

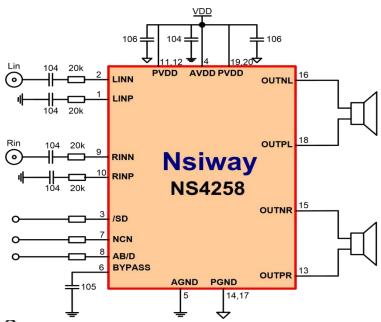
- 输出功率: 3.2W×2(4Ω 负载), 5.2W ×2(2Ω 负载)
- 超低底噪: 90uV
- 工作电压范围: 2.8V~5.5V
- 0.05%THD(2 W 输出功率、5V 电源、2Ω负载、

ClassD)

- AB 类 D 类切换功能
- 防失真(NCN)功能
- 差分输入方式
- 优异的"上电,掉电"噪声抑制
- 高达 85%的效率
- 过流保护、过热保护、欠压保护
- eTSSOP-20 , SOP-16 封装

3 应用范围

- 蓝牙音响
- 其他便携式音响

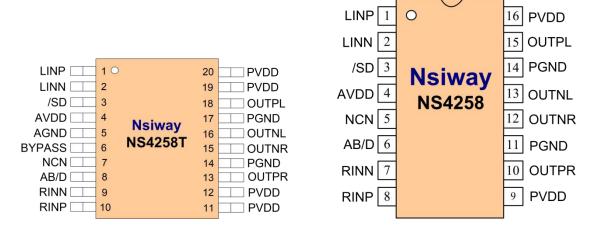

4 应用电路

2 说明

NS4258 是一款全差分输入,超低噪声,防失真,无需滤波器,5W×2 双声道 AB 类 D 类切换音频功放。NS4258 采用全差分输入设计,使得功放有较好的共模噪声抑制特性。NS4258 采用先进的技术,在全带宽范围内极大地提高信噪比,最大限度地降低了底噪声。独特的防失真(NCN)功能可以有效防止输入信号过载导致的输出信号失真,实现更加舒适的听觉感受。同时可以有效保护在大功率输出时扬声器不被损坏。AB/D 类工作模式可通过一个控制管脚高低电平切换,以匹配不同的应用环境。其输出无需滤波器的 PWM 调制结构及反馈电阻内置方式减少了外部元件、PCB 面积和系统成本。NS4258 在5V 的工作电压时,每个通道能够向 2Ω负载提供 5W 的输出功率。

NS4258 内置过流保护、过热保护及欠压保护功能,有效地保护芯片在异常工作状况下不被损坏。 并且利用扩频技术充分优化全新电路设计,D类模式 下高达 85%以上的效率更加适合低电压,高功率输 出的音频系统。

NS4258 提供 eTSSOP-20 和 SOP-16 封装,额定的工作温度范围为-40℃至 85℃。



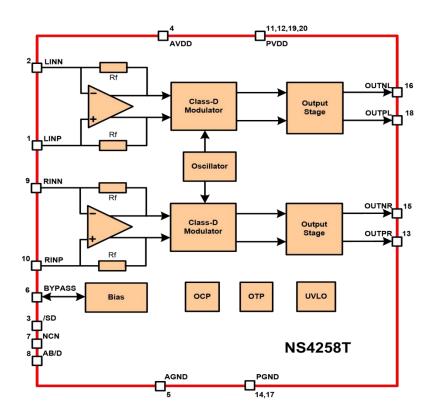
www. yxd163. com

5 管脚配置

NS4258 eTSSOP20&SOP16 的俯视图如下图所示:

NS4258 管脚说明:

SOP16	eTSSOP20	管脚名称	管脚描述
1	1	LINP	左声道正端输入
2	2	LINN	左声道负端输入
3	3	/SD	关断控制端(高电平开启,低电平关断)
4	4	AVDD	电源输入
-	5	AGND	模拟地
-	6	BYPASS	VDD/2 参考电压输出
5	7	NCN	防失真功能控制端
6	8	AB/D	AB 类/D 类工作模式切换控制脚
7	9	RINN	右声道负端输入
8	10	RINP	右声道正端输入
9	11	PVDD	功放级电源
-	12	PVDD	功放级电源
10	13	OUTPR	右声道正端输出
11	14	PGND	功放级地
12	15	OUTNR	右声道负端输出
13	16	OUTNL	左声道负端输出
14	17	PGND	功放级地
15	18	OUTPL	左声道正端输出
16	19	PVDD	功放级电源
-	20	PVDD	功放级电源



6 极限工作参数

参数	最小值	最大值	単位
电源电压	2.8	5.5	V
储存温度	-65	150	°C
输入电压	-0.3	V_{DD}	V
耐 ESD 电压	2000		V
结温	150		°C
推荐工作温度	-40	85	°C
推荐工作电压	3	5.25	
热阳			
$\theta_{\text{JC}}(\text{eTTSOP-20})$		33	°C/W
$\theta_{ m JA}({ m eTTSOP-20})$		30	°C/W
θ _{JC} (SOP-16)		20	°C/W
θ _{JA} (SOP-16)		80	°C/W
焊接温度		260	°C

注:如果器件工作条件超过上述极限值,可能对器件造成永久性损坏。上述参数仅仅是工作条件的极限值,不建议器件工作在推荐条件以外的情况,器件长时间工作在极限条件下,其可靠性及寿命可能受到影响。

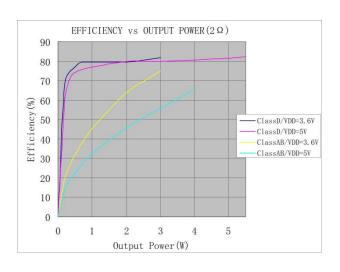
7 功能框图

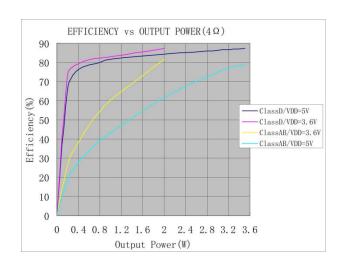
8 电气特性

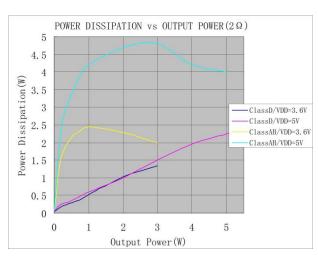
工作条件(除非特别说明): Ta=25℃。

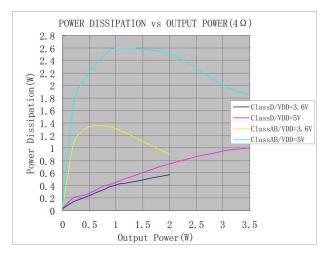
符号	参数	测试条件	最小值	标准值	最大值	单位
V _{DD}	电源电压		2.8		5.5	V
I _{DD}	电源静态电流	V _{IN} =0V,No load		20		mA
I _{SD}	关断漏电流	V _{/SD} =0V		1		μΑ
Vos	输出失调电压	V _{IN} =0V		20		mV
		217Hz		-65		dB
PSRR	电源抑制比	20KHz		-60		dB
CMRR	共模抑制比			-70		dB
f _{SW}	调制频率			500		kHz
η	效率	Po=2.5W,R _L =4Ω		85		%
V _{IH}	逻辑控制端 高电平		2			V
V_{IL}	逻辑控制端 低电平				0.4	V
t _{AT}	NCN 启动时间	NCN		10		ms
t _{RL}	NCN 释放时间	NCN		1.1		S
Vn	输出噪声	20Hz-20kHz,Gain=15dB		90		uV
		THD=1%,f=1KHz,Class AB R _L =2 Ω R _L =4 Ω		3.7 2.4		W
	输出功率	THD=10%,f=1KHz,Class AB R _L =2 Ω R _L =4 Ω		4.8 3.0		W
P _O	(NCNOFF 模式)	THD=1%,f=1KHz,Class D R _L =2 Ω R _L =4 Ω		4.1 2.6		W
		THD=10%,f=1KHz,Class D R _L =2 Ω R _L =4 Ω		5.2 3.2		W
THD+N	总失真度+噪声	$\begin{aligned} & \text{Gain=15dB}, f=1 \text{kHz} \\ & \text{R}_{\text{L}}\text{=2} \ \Omega \ , \ P_{\text{o}}\text{=2W} \end{aligned}$		0.05		%
SNR	信噪比	$\begin{aligned} & \textbf{Gain=15dB}, f=1 \text{kHz} \\ & \textbf{R}_{\textbf{L}} \textbf{=2} \; \Omega \; , \; \textbf{P}_{\textbf{0}} \textbf{=4W} \end{aligned}$		-95		dB
CS	L/R 分离度	Gain=15dB, $f=1kHz$ R _L =2 Ω , P ₀ =4W		-80		dB

www. yxd163. com

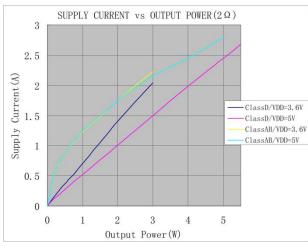

	A _{MAX}	最大衰减增益	NCN Model	-10	dB
П	1417 01	- DC / 4 - DC / / 1 - 11111		_	

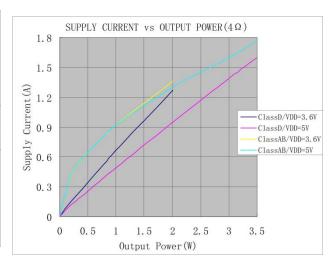

NS4258 Oct.2018 V1.0

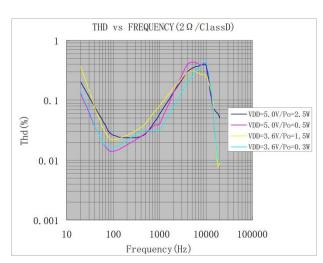


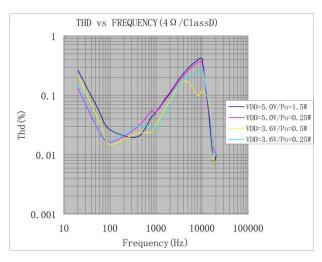

ОТР	热保护温度		150	°C
ОТН	滞回温度		20	$^{\circ}$ C
Stereo Isolation	立体声分离度	$RL=4\Omega$, $Po=0.5W$	-80	dB
SNR	信噪比	$RL=4\Omega$, $Po=0.5W$	85	dB

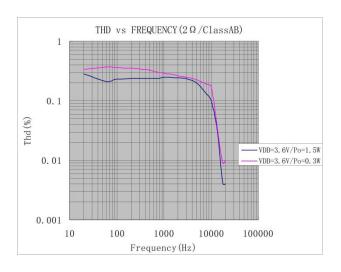
9 典型特性曲线

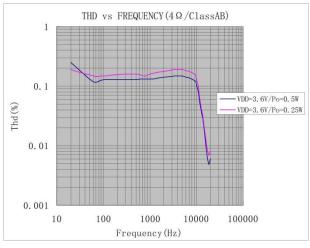


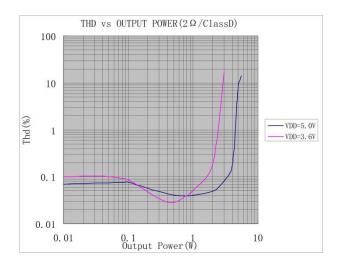


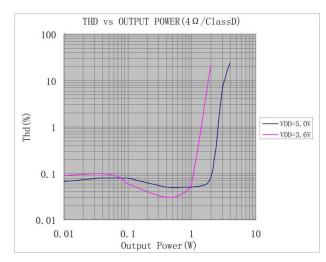


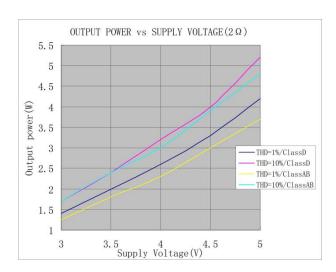

NS4258 Oct.2018 V1.0

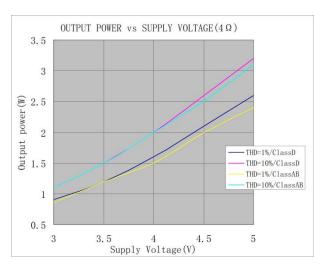


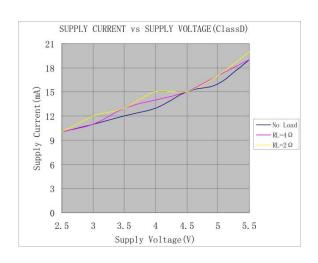


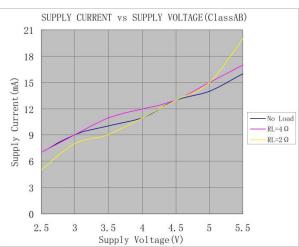












10 应用说明

10.1 低功耗关断控制端/SD

/SD 管脚是功放低功耗关断控制端。低电平时音频功放关闭,芯片处于低功耗状态; 高电平时音频功放打开,芯片开启工作。/SD 管脚内部有下拉 100k 电阻,悬空时处于关断状态。为了抑制开关机 POP 声,开机时,应该在相关系统上电稳定后才打开/SD 管脚。之前,/SD 管脚应保持关断状态; 关机时,应该在功放电源关闭之前使/SD 管脚为低电平,芯片处于关断状态,最后才关闭电源。

/SD 管脚状态	放大器工作状态
高电平	Power ON
低电平	SHUT DOWN
悬空	SHUT DOWN

10.2 防失真(NCN)功能

NS4258 有防失真(NCN)功能。通过 NCN 引脚设置可进入防失真工作模式。高电平时防失真功能打开,芯片工作在防失真模式;低电平时防失真功能关闭,芯片工作在普通模式。NCN 管脚内部有上拉 100k 电阻,悬空时为高电平。

NCN 管脚状态	放大器工作模式
高电平	NCN
低电平	NCNoff
悬空	NCN

防失真功能可有效防止输入信号过载导致的输出信号失真,可以有效保护在大功率输出时扬声器不被 损坏。其原理是:放大器自动检测输出削顶失真,自动调整放大器的增益,达到防失真效果。如下图所示:

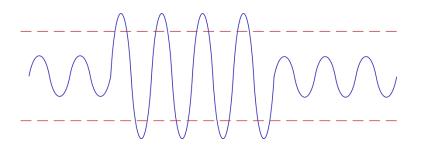


图 1 假设不受电源电压限制时的音频输出信号

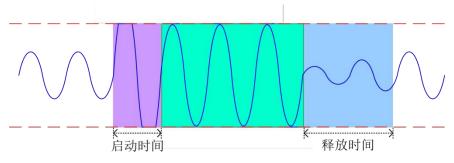


图 2 普通工作模式下的音频输出信号

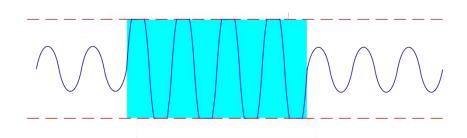


图 3 防失真工作模式下的音频输出信号

10.3 AB 类/D 类工作模式切换

NS4258 通过设置 AB/D 管脚电平的方式选择放大器工作在 AB 类或者 D 类。AB/D 管脚高电平时,放大器工作在 D 类模式。AB/D 管脚低电平时,放大器工作在 AB 类模式。AB/D 管脚内部有上拉 100k 电阻,悬空时,放大器工作在 D 类模式。如下表所示:

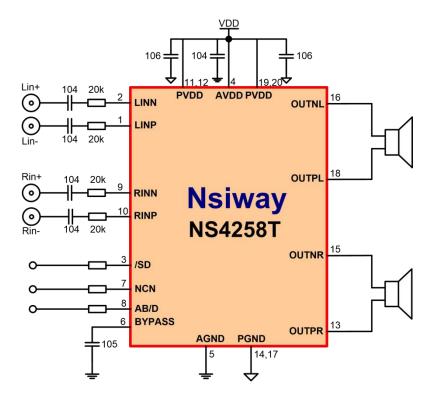
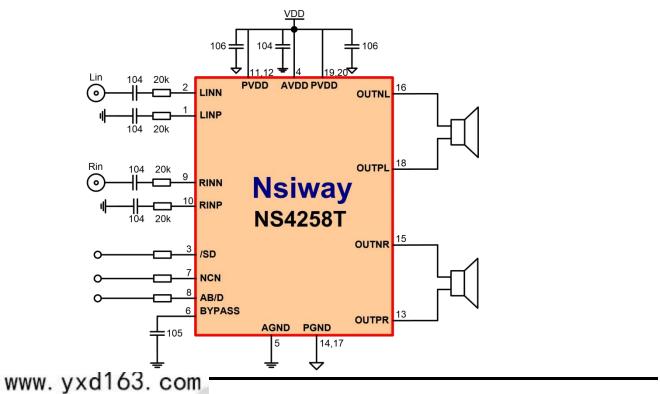

AB/D 管脚状态	放大器工作模式
高电平	Class D
低电平	Class AB
悬空	Class D

图 4 AB/D 类工作模式设置



10.4 NS4258 应用图示

10.4.1 差分输入模式

10.4.2 单端输入模式

10.5 NS4258 应用参数设置

10.5.1 放大器增益设置

NS4258 增益可以通过外接输入电阻设置。

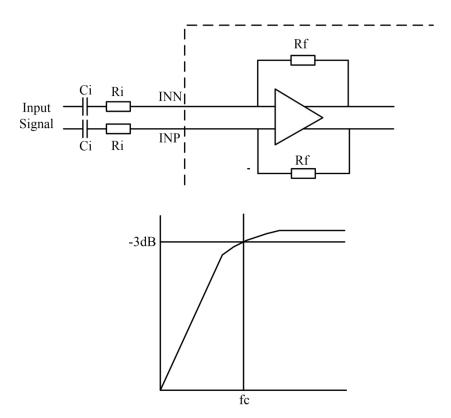
工作在普通模式时,内置 160k 反馈电阻。整个放大器的增益计算公式为:

$$A_{VD} = \frac{160k}{Ri}$$

其中, Ri 为外接输入电阻。例如 Ri=20k,Av=8 倍(18dB)。

工作在防失真模式时,内置 240k 反馈电阻。整个放大器的增益计算公式为:

$$A_{VD} = \frac{240k}{Ri}$$


其中, Ri 为外接输入电阻。例如 Ri=20k, Av=12 倍(22dB)。

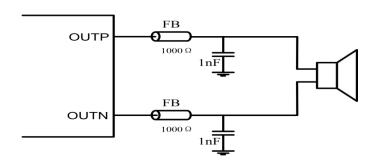
10.5.2 输入电容 Ci 的选取

外接输入电容 Ci 和输入电阻 Ri 构成输入高通滤波器。-3dB 转折频点计算公式为:

$$fc = \frac{1}{2\pi \cdot Ri \cdot Ci}$$

图示如下:

输入高通滤波器曲线


增益固定,也就输入阻抗确定了之后。输入隔直电容 Ci 的选取尤为重要。一个方面,容值直接影响放大器的低频特性。另一方面,开关机 POP 声的抑制性能受电容的影响,如果耦合电容大,则反馈网络的延迟大,pop 声容易出现。小的耦合电容可以减少该噪声。因此,输入电容 Ci 的选取要兼顾这两个方面。比如,增益为 18dB,输入阻抗为 20k,-3dB 转折点 fc 取 80Hz,由上计算公式得 Ci=0.1uF。

10.5.3 电源去耦电容

NS4258 是一款高性能的音频功率放大器。因此,适当的电源去耦电容能够保证功放输出的总谐波失真 (THD)足够低。电源去耦同样也能消减脉冲对扬声器的干扰。针对电源线上不同种类的噪声可适当的选择不同的电容去耦网络。对于高频噪声,低频噪声,可以用一个高质量容值在 1uF 到 10uF 电容去耦。该电容最好能尽量靠近功率电源。另外,一个 220uF 或者更大的铝电解电容可对大信号瞬态干扰去耦。该电容应当靠近功率电源脚接入。AVDD 管脚也必须接一个 0.1uF-1uF 的电容去耦,该电容应当靠近功率电源脚接入。

11 输出滤波器

NS4258 在 D 类工作模式,大功率及长的输出负载线等各种情况下带磁珠滤波器的测试, NS4258 模组都可通过 FCC 的 B 级测试。磁珠的类型及规格可根据实际使用选择。如下图:

12 layout建议

NS4258 工作在 D 类模式时,在大多数使用中,使用的磁珠滤波器就能满足要求。然而, D 类功放的开关 边沿变化十分迅速,因此,在 layout 的过程中需要仔细考虑。 针对噪声以及系统的电磁兼容(EMC)要 求,以下是几点建议:

- 1. 针对不同噪声源以及干扰相应电源去耦电容要预留。电容尽可能靠近管脚放置。
- 2. 输出电流环路尽量小。无论是磁珠或者电感和电容构成的滤波器尽可能的靠近输出管脚。 此部分电路尽可能远离敏感信号线和电路。
- 3. 地线走线: AVDD 去耦电容应当接在 AVDD 与 AGND 之间; PVDD 去耦电容应当接在 PVDD 与 PGND 之间。然后 AGND 和 PGND 可接在散热 片 PAD 上引出。
- 4. 散热片应当合理的焊接在 PCB 板的散热区域内。

13 测试电路

NS4258 测试电路如下图,测量 D类模式功放时, 低通滤波器(Low PASS Filter)是必须的。可以用两个 33uH 的电感串联在负载电阻两端以等效扬声器。如果只采用纯电阻代替扬声器负载,所测到的结果会比扬声器做负载时结果差,包括功率,效率,失真度等指标。

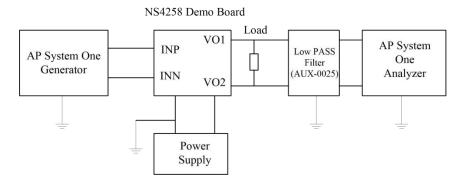
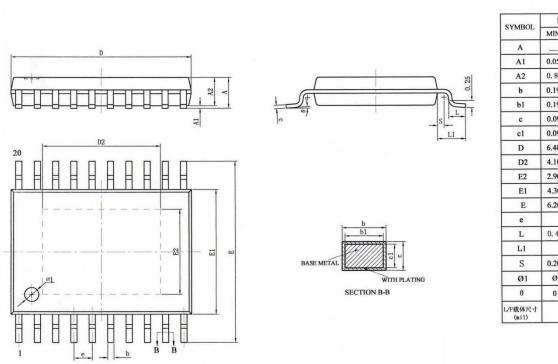



图 5 NS4258 测试电路

14 芯片的封装

14.1 eTSSOP-20 封装尺寸图

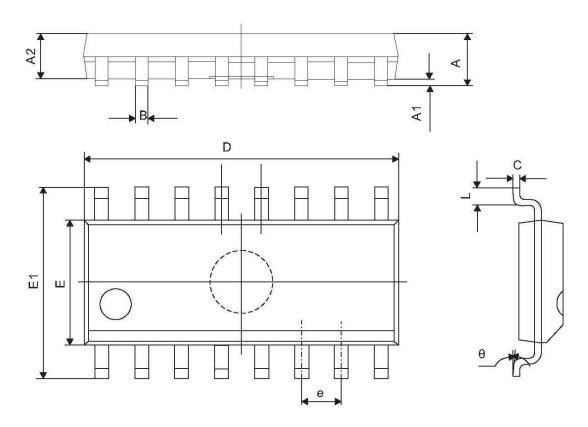

YMBOL	MI	LLIMET	ER
YMBOL	MIN	NOM	MAX
Α	_	_	1.20
A1	0.05	_	0.15
A2	0.80	1.00	1.05
b	0.19	_	0.30
b1	0.19	0.22	0.25
С	0.09	_	0.20
c1	0.09	_	0.16
D	6.40	6.50	6.60
D2	4.10	4.20	4.30
E2	2.90	3.00	3.10
E1	4.30	4.40	4.50
Е	6.20	6.40	6.60
e		0.65BS	
L	0.45	0.60	0.75
L1		1.00BS	2
S	0.20	-	-
Ø1	Ø0.8X0. 05~0. 10DP		
θ	0	_	8°
/F载体尺寸 (mil)	118*165 (C)		

图 6 eTSSOP-20 封装尺寸图

14.2 SOP-16 封装尺寸图

Symbol	Dimensions	s Millimeters
**	Min	Max
Α	1.350	1.750
A1	0.100	0.250
A2	1.350	1.550
В	0.330	0.510
С	0.190	0.250
D	9.800	10.000
Е	3.800	4.000
E1	5.800	6.300
е	1.270	(TYP)
L	0.400	1.270
θ	0°	8°

图 7 SOP-16 封装尺寸图