

品质为本服务为根

产品手册 深圳扬兴科技有限公司

Up-to-date products as well as leading edge technology enable YXC to provide the optimal frequency solutions worldwide.YXC has dedicated to meet and exceed various frequency demands.

■公司简介

深圳扬兴科技有限公司创立于 1986 年 7 月, 在晶振领域已有三十余年行业经验, 是一家专业的 晶振供应商。深圳扬兴是一家晶振授权与独立型供应商,其通过 IS09001 企业质量管理体 系认证, 拥有自主品牌 YXC,品牌创立至今约十年,在行业内拥有极高的知名度和美誉度,同时产品通过 ROHS 认证及 REACH 认证,并畅销国内外。现扬兴为日本 EPSON 在大中华区的一级代理商,有源晶振销 量在代理中位列第一,亦是美国 SITIME 可编程晶振亚洲区一级代理商, MEMS 晶振销量位列全球代 理第一。同时,扬兴于 2016 年初成为中国首家可编程晶振厂商,是国内首家拥有快速编程的晶振制 造商,产品拥有超低功耗、超小体积的绝对领先优势。

公司目前拥有先进的测试仪器和经验丰富的销售技术团队,主营产品系列有:可编程晶振、石 英振荡器、石英晶体谐振器、时钟晶振、陶瓷谐振器、TCXO温补晶振、滤波器等。扬兴产 品广泛 应用于钟表、安防、网络摄像头、数码产品、车载数码、MID平板电脑、网络通讯、基站、光电技 术等设备及各种频率控制设备。

深圳扬兴科技有限公司的使命是为客户提供最佳频率解决方案,力争在 2020 年成为晶振行 业的 领导者。多年来,扬兴科技凭着"品质为本,服务为根"的经营理念,秉承"质量第一、用户至尊" 的服务宗旨,在行业内外赢得了广大用户的认可。

ShenZhen YANG XING Technology Co., Ltd, which was founded in July 1986, is a professional crystal oscillator supplier with industrial experience of over thirty years. YANG XING has obtained the IS09001 Enterprise quality management system certification with its self-owned brand-YXC. It is one well received as well as independent supplier, which passed ROSH and REACH. There exists a great demand of YANG XING* s products home and abroad. At present YANG XING, as the A-level agent of both corporation EPSON in Japan (oscillator sales ranked first in all agents) and corporation SITIME in United States, has the best sale of MEMS crystal oscillator all over the world. At the same time, early in 2016 YANG XING become China's first programmable manufacturers, rapid programming mass MEMS oscillators, and the product have the absolute advantage with Ultra-low power consumption and super small size.

YANG XING possesses the advanced testing equipment and experienced selling groups. Its main products are as follows: Programmable crystals, quartz oscillator, quartz crystal resonators, crystal clock vibration, ceramic resonator, TCXO removing crystals, filter, etc. Products are widely applied to various kinds of frequency control devices and others like: Clocks and watches, security, network cameras, digital products, car digital, MID tablet computer, network communication, base station, and photoelectric technology.

The mission YANG XING has always been devoting to is to provide the optimal frequency solution to customers, making itself try hard to get the leadership in the industry. For years, YANG XING has wined the approval of thousands of users with its unique operation principle —— "Quality is the stem and service is the root" as well as its service aim —— "Quality first, user first".

YXC

■ DIRECTORY

YXC Serise Products 石英晶体介绍 Technical Survey For Quartz Cryst 直插金属表面石英晶体谐振器 DIP Metal Surfa

HC-49XS
HC-49US
HC-49US3
YT-26
YT-38
1 1-30

贴片金属表面石英晶体谐振器 SMD Metal Surface Quartz Crystal Resonator

HC-49XSMD
HC-49SMD
YSX1210SL
YSX1612SL
YSX211SL
YSX221SL
YSX321SL
YSX531SL

32.768KHZ 贴片金属表面石英晶体谐振器 SMD 32.768KHZ Metal Surface Ouartz Crystal Resonator

	-	
YST310S	 	
YSX1610SK	 	
YSX2012SK		

\$
YSX2ABCQ200 Metal Surface Quartz Crystal Reso
YSX221SC.
YSX321SC
YSX530SC

15A5505C
YSX531SC

贴片陶瓷表面石英晶体谐振器 SMD Cerami	c l	S	3		1	1
--------------------------	-----	---	---	--	---	---

YSX530GA	29
YSX146GA/YSX306GA	30

al	1
ce Quartz Crystal Resonator	
	7

 12
 13
 14
 15
 16
 17
 19

	23
onator	

Surface Quartz Crystal Resonator

贴片金属表面振荡器 SMD Metal Surface Oscillator

YSO110TR	
YSO130HR	
YSO120TK	
YSO230LR	37
车规级贴片金属表面振荡器 AEC-Q200 Oscillators	
YSO140TC	
DIP 金属表面振荡器 DIP Metal Surface Oscillator	4.1
YSO1212SR	
YSO1512SR	
贴片金属表面可编程振荡器 SMD Metal Surface Programmable Oscillator	
YSO680PR	
YSO690PR	
YSO210PR	47
YSV220PR	
YSV310PR	
YXC MEMSRT 编程振荡介绍	
Introduction to MEMS YXC Programmable Oscillator	53
低功耗可编程振荡器 MPowerOscillators	
YS08008MR	60
YS08009MR	
高效能可编程振荡器 Ultra-Performance Oscillators	
YSO8208MR	66
YSO8209MR	69
军工级可编程振荡器+125°C High Temp Oscillators	
半上级可编性派物器+125 C High Temp Oscillators YSO8918MR	72
YSO8918MR	
差分可编程振荡器 Differential Oscillators	
YSO9121MR	
YSO9122MR	
KHZ 超小型系列 32KHZ Ultra Small Oscillators	
YS01532MK	
YSO1533MK	
YSO1552MK	
YXC标签信息 YXC Tag Information	
生产流程 Production Flow	
工厂设备 Factory Equipment	
上/ 以宙 ractory Equipment	

Technical Terminology

	(1)	quartz materia	l and	frequency	control	products
--	-----	----------------	-------	-----------	---------	----------

- (2) piezoelectricity
- (3) type of quartz crystal cut
- (4) mode of vibration
- (5) frequency-temperature characteristics
- (6) equivalent circuit of a crystal resonator
- (7) resonance frequency
- (8) terminologies
- (9) oscillators

If you have any questions please E-mail us.

(1) quartz material and frequency control products

Quartz, a kind of crystallized Silicon Dioxide, SiO2, 32 The Silicon Dioxide atom is electrical natural in symmetry group of trigonal system (Fig.1), exhibits stable state. The electric dipole is along with silicon piezoelectric property, which is the operating base of the asix.(Fig.2) shows simplified two dimensional structure. electromechanical products. With its intrinsic high When we apply an electric field along with dipole direction, with positive charged at the silicon side and Q-value, the quartz based resonator and oscillator are the negative charged at the oxygen side, the oxygenation will most widely adopted as the reference signal source in repel to each other creating an induced electrical field to circuitry for frequency control applications. Quartz balance the system. The oxygen ions will toward to each frequency control products can be categorized into bulk other if we apply a negative charged and positive charged acoustic wave application devices, such as electric field to silicon and oxygen ions respectively. The crystals/resonators, monolithic crystal filters and clock oxygen ions will vibrate along horizontal direction in the oscillator, and surface accoustic wave application same frequency as the alternative electric field along with vertical direction. The displacement of ions or the devices, such as SAW resonators and SAW filters. A amplitude of vibration depends on the angle between the piece of quartz crystal in a specific orientation cut, shape electrical field and the electric dipole of quartz. In and dimensions is named crystal wafer (blank). Such a practical three dimensional quartz crystals, electrical crystal wafer with two deposited electrodes on both sides field is supplied by electrodes coated on the surface of and housed in a holder is a crystal unit (one-port quartz wafer. The orientation of dipole can be decided resonator). By using the one-port resonators as through different kinds of cutting angles for quartz bar. impedance elements, crystal bandpass filters can be obtained. By incorporating the crystal resonator into a kind of electric circuit, one could get different kinds of

clock crystal oscillators (CXO), for example, Pierce Oscillator, Colpitts Oscillator, Simple Package Crystal Oscillator, Voltage Controlled Crystal Oscillators, Temperature Compensated Crystal Oscillator, Oven

Technical Survey For Quartz Crystal 石英晶体介绍

Controlled Crystal Oscillator, and so on. Instead of bulk vibration of quartz crystals, a shorter wavelength (higher frequency) vibration can be achieved by surface wave propagation with inter-digital-transducer (IDT) electrodes on the surface of quartz material. This vibration mechanism can be used for resonator and filter applications

(2)piezoelectricity

Fig. 2) Simplified one dimensiona piezoelectricity of SiO2

(3)type of quartz crystal cut

According to different cut angles to quartz bars, there are different kinds of quartz plates, for examples, AT 各 BT-, CT-, DT-, NT-, GT- cut plates Different types of quartz cuts, indicated by a set of Euler angles, have different available elastic, piezoelectric and dielectric properties, which are the basic parameters for designing a quartz crystal device. The most often used Quartz-cut types are shown in (Fig.3) schematically.

(Fig. 3)Orientation angle of a Z-plate quartz crystal.

(4) mode of vibration

The vibration modes of the quartz crystal units are grouped into flexure, extension, face shear and thickness shear modes. The schematics of the vibration modes and the plate cuts usually used are listed in Table 1. Fundamental mode and overtone modes can be operated in any kinds of resonators. Fundamental mode is most often used, but for the thickness type devices the overtone modes are often used as well, as shown in (Fig.4)

Technical Survey For Quartz Crystal 石英晶体介绍

(Fig.4)Vibration Mode and Cut Angle.(5) frequency-temperature characteristics

Most of the quartz products are used as an electrical circuit component for frequency selection and/or frequency control, so the frequency-temperature characteristic of the devices is the most important parameter. This part per million (ppm) level stability of frequency-temperature characteristic is another merit of quartz frequency device that LCR discrete component oscillation circuitry can't be achieved in mass-production scale. For the usually used quartz crystal cuts, their frequency-temperature characteristics are shown in (Fig. 5).

(Fig. 5) Frequency-temperature characteristics of various quartz cuts.AT-cut is the most popular crystal cut in the quartz devices for MHz applications. (Fig. 6) shows the orientation of AT plat from top view of + X-axis.

(Fig.6) Orientation of AT plat

(Fig. 7) shows the frequency-temperature characteristics of the AT-cut crystal operating in thickness-shear mode, with the cut angle deviation as a parameter. It is shown that AT-cut quartz has excellent frequency stability over a wide temperature range since the first-and second-order of the temperature coefficients go to zero in this range and the temperature coefficient is only dominated by a third-order function of the temperature deviation.

(Fig. 7) AT - cut frequency-temperature characteristics.(6) equivalent circuit of a crystal resonator

(Fig. 8) shows the schematic of both metal can type and ceramic SMD type resonators and its symbol. The electrical properties of the unloaded resonator can be approximately expressed in Butterworth-Van Dyke (BVD) equivalent circuit as shown in (Fig.9) when operating near a resonance frequency zone.

石英晶体介绍 Technical Survey For Quartz Crystal

(0

L

(Fig.8)(a)Metal can type resonator(b) Ceramic SMD type resonator(c) Symbol of crystal usnit

By using the four parameters shown in (Fig .8) the major electrical properties of a crystal resonator and of a oscillator consisting of the crystal resonator are described as follows.

C1 L1 R1

'扬兴晶振]

石英晶体介绍 Technical Survey For Quartz Crystal

石英晶体介绍 Technical Survey For Quartz Crystal

(7)resonance frequency

In literatures and product descriptions, there are three pairs of resonance frequencies, i.e., the "series resonance frequency" and " parallel resonance frequency", (fs and fp), the "resonance frequency" and "anti-resonance" frequency, (fr and fa), and the "maximum and minimum total admittance located" frequencies, (fm and fn). All of them can be obtained from the lumped equivalent circuit parameters as given in(Fig.9)The definitions and relationship of the resonance frequency pairs can be clearly expressed in a complex admittance diagram given in (Fig. 10).

(Fig. 10) Complex Admittance of Resonator

The series and parallel resonance frequencies, fs and fp are determined by taking the input electrical conductance (real part of the admittance) and resistance (real part of the electric input impedance) in maximum, respectively, as shown in (Fig. 10). The resonance frequency, fr and anti-resonance frequency, fa, are given by the two roots where the susceptance (imaginary part of the input electric admittance) equals to zero, as shown in (Fig. 10). The resonance frequency and anti-resonance frequency fr and fa are the frequencies of principal interest in two terminal applications. For evaluating the equivalent circuit of a resonator, however, the characteristic frequencies, fs and fp are more important. They are given by

= W 亦向.....

Where, C1 and L1 are the motional capacitance and motional inductance, respectively, and Co is the static capacitance appearing in shunt branch (Fig. 9).

(8) terminologies

(1) Nominal Frequency and Its Tolerance or Calibration Accuracy

The frequency of a crystal resonator is typically specified in megahertz (MHz) or kilohertz (kHz). The normal frequency is the output frequency what we expect from the crystal oscillation circuitry with proper matching. There is an amount of frequency deviation from the nominal frequency at ambient temperature (referenced to 25[©] for a real device. The tolerance of the idea central frequency deviation, as a parameter of the device, is specified with a maximum value, expressed in percent (%) or parts per million (ppm).

(2) Fundamental and Overtone Vibrations The thickness shear vibration is the main

vibration mode existed in AT cut. The high order harmonic vibrations are co-existed with fundamental vibration between electrode areas. Due to the reverse polarity of two electrodes, only odd number harmonic vibrations can be excited in piezoelectric quartz resonators. (Fig. 11) Electrode* —r

QuAm? BLANK

(Fig. 11) Only odd number harmonic vibrations can be excited in crystal resonator

3. Load Capacitance Load capacitance, CL, is the amount of capacitance that the oscillator exhibits when looking into the circuit through the two ends of the resonator. The load capacitance is formally in either series or parallel with the resonator. For parallel load case the The value of C1 is very small in comparison with existence of CL will affect the parallel resonance capacitances usually used in oscillation circuits and can be evaluated from the material and geometry parameters of frequency and the parallel-load resonance frequency, fL, is given by the crystal plate and electrodes.

$$fi = fs^{+} + CJ(Co + Ct) - \dots - (3)$$

This parameter is necessary to be specified.

4. Frequency-Temperature Stability Frequency-Temperature stability is indicated by the amount of frequency variation from the value at the standard ambient temperature (25Q, usually), caused by where, A is the electrode area, d is the thickness of the the operating temperature change. This parameter is blank, and E is the dielectric constant of the corresponding specified by a curve showing the frequency variation crystal cut. In practically, Co includes not only the static (expressed in % or ppm) versus the temperature deviation capacitance of plated quartz blank, but also the capacitance from the reference temperature (25 心). The temperature of conductive bonding material and the capacitance of stability of a quartz device depends on the type of cut, the housing itself. mode of vibration, and the dimension of the quartz blank. 8. Drive Level Besides, the deviation value is associated with the The drive level of a resonator is the amount of power operating temperature range, the load capacitance and the dissipation, expressed in nanowatts, microwatts or drive level of the crystal resonator.

5. Equivalent Series Resistance (ESR) The resistance R1 appearing in the series branch (fig. 9) can be measured at series resonance frequency, where the effects of C1 and L1 are cancelled each other and the effective result of the branch is resistive. R1 represents the mechanical loss in the crystal unit and the holder.

6. Motional Capacitance C1 and Motional Inductance L1

These two parameters are definitely related by the series resonance frequency, fs, as given in (Fig.1 0), and fs is a very sure parameter in resonator design and in characterization. Only the value of C1 is specified in industry standard and L1 can be obtained from

7.Static Capacitance Co (in Shunt) The shunt capacitance, Co, is a static capacitance, which is present whether the device is oscillating or not. The value of Co can be measured at very low frequency (less than or about 1.0 MHz), and theoretically is given by

milliwatts. Operating level is the suitable power range to assure proper start and maintain a steady state oscillation. Drive level should be operated at the minimum level to avoid long-term frequency drift and crystal fracture. Generally, the smaller the product is, the lower the drive level should be applied without damaging the quartz resonators for long term usage. Generally, the drive level from 10p Wto 100 p W is good enough for most of the applications.

9. Quality Factor-Q

As a resonator, quality factor-Q value is a very important parameter. In specification, unloaded and loaded Q values are specified. The unloaded Q, or mechanical Q, can be expressed by

石英晶体介绍 Technical Survey For Quartz Crystal

range for a long time, all of the specifications are guaranteed over the specified operating temperature range.

13.Negative Resistance "-R" Negative resistance is introduced to describe the electric property of an oscillator circuit, This is the amount of resistance that the oscillator circuit exhibits when looking into the circuit through the terminals of the resonator. One of the basic oscillation conditions demands the amplifier have to supply enough gain to compensate the loss in the resonator. From resonator point of view, the load has to exhibit enough "negative resistance" to compensate the resistance of the resonator. This is an important parmeter in designing oscillators.

(9) oscillators

'扬兴晶振]

Features

HG49XS

■External dimensions: 7.0x4.0x 1.5mm. ■Frequency range: 8 MHz - 50MHz. -Through hole type crystal units. -A great number of standard frequencies. -High frequency pullability and low equivalent series resistance. -Highly mass production capability. -Applications: PC, STB, LCDM and Cable Modem.

I Item / Type	I HC-49XS
Nominal Frequency Range	8-50MHZ
Vibration Mode	AT Fundamental
Load Capacitance	12pE 20pE or specify
Frequency Tolerance (at 25 °C)	± 10 ppm, ± 20 ppm, or specify
Frequency Versus Temperature Characteristics	± 20 ppm, or specify
Operating Temperature	$-20 \sim +70$ °C , $-40 \sim +85$ °C, or specify
Storage Temperature	$-40 \sim +85$ °C, or specify
Shunt Capacitance	5pFMax.
Level Of Drive	0.01- WOOuW
Frequency Aging (at 25 °C)	± 3 ppm/year Max.

Fundamental	1	
8.000-11.999MHz	80 Q Max.	
12.000-15.999MHz	60 Q Max.	
16.000-19.000 MHz	50 Q Max.	
20.000~50.000MHz	40 Q Max.	

Dimensions

(6)

where, R1 is the resistance appearing in the series branch.

The loaded Q value depends on the loaded circuit.

10.Pullability

In a parallel-load capacitance oscillator, the oscillation frequency depends on the load capacitance, CL as shown in (Fig.8) and (Fig. 12). The frequency change (in ppm) as a function of the load capacitance change (in pF) is a specification. In certain applications where the variation of loaded resonance

frequency is mandatory (VCXO, for example), pullability has to be soecified.

11 .Aging

Aging is the relative change of operating frequency over a specified time period and is expressed in parts per million (ppm) within a specified period. This rate of frequency change is normally exponential in character. The highest aging rate occurs within the first week of aging and decreases slowly after wards. Typically, aging is computed within first 30 days and is calculated over a long-term period (one year or ten years). Aging rate depends on many factors: seal method, integrity, manufacturing processes, material type, operating temperature, and frequency.

12.STORAGE TEMPERATURE RANGE The specification indicates the minimum and maximum temperatures in which the devices can be stored or exposed in a non -operating state. After storing or exposing the devices at the specified temperature

直插金属表面石英晶体谐振器 DIP Metal Surface Quartz Crystal Resonator

3.1±0.1

HC-49US

直插金属表面石英晶体谐振器 DIP Metal Surface Quartz Crystal Resonator

Units: mm

Features

- External dimensions: 11.5x4.5x3.68mm.
- -Frequency range: 3.2768MHz ~ 64MHz.
- -Through hole type crystal units.
- A great number of standard frequencies.
- High frequency pullability and low equivalent series resistance.
- -Highly mass production capability.
- Applications: PC, STB, LCDM and Cable Modem.

Electrical Specifications

Item / Type I	I HC-49US
Nominal Frequency Range	3.2768 ~ 64 MHz
Vibration Mode	AT Fundamental
Load Capacitance	12pl= 20pB or specify
Frequency Tolerance (at 25 *C)	± 10 ppm, ± 20 ppm, or specify
Frequency Versus Temperature Characteristics	± 20 ppm, or specify
Operating Temperature	-20 - + 70 $^{\#}\!C$, - 40 \sim + 85 $^{\#}\!C_f$ or specify
Storage Temperature	-40 ~ +85 °C, or specify
Shunt Capacitance	7 pF Max.
Level Of Drive	1 ~ 500 nW (100nWtypical)
Frequency Aging (at 25©	± 3 ppm/year Max.

Equivalent Series

Fundamental		3rd Overtone	3rd Overtone	
3.2768 ~ 4 MHz	180 Q Max.	20 ~ 25 MHz	100 Q Max.	
4~5 MHz	120 Q Max.	25-64 MHz	80 Q Max.	
5 ~ 6 MHz	100 Q Max.			
6 ~ 7 MHz	80 Q Max.			
7~10MHz	60 Q Max.			
10~27MHz	40 Q Max.			

Dimensions

扬兴使命: 高效为客户提供时钟频率器件解决方案。

¥

「扬兴晶振]

HC-49US3

Features

- External dimensions: 11.5x5.0x3.68mm. -Frequency range: 3.579545MHz ~64MHz. -Through hole type crystal units. • A great number of standard frequencies. • High frequency pullability and low equivalent series resistance. -Highly mass production capability. • Applications: PC, STB, LCDM and Cable Modem.

Electrical Specifications

Item / Type J	I HC-49US3
Nominal Frequency Range	3.579545 ~ 64MHz
Vibration Mode	AT Fundamental
Load Capacitance	12pE 20pB or specify
Frequency Tolerance (at 25 °C)	$\pm 10 \text{ ppm}_{f} \pm 20 \text{ ppm}, \text{ or specify}$
Frequency Versus Temperature Characteristics	± 20 ppm, or specify
Operating Temperature	$-20 \sim +70$ °C f - $40 \sim +85$ °C, or specify
Storage Temperature	-40 ~ +85 °C, or specify
Shunt Capacitance	7 pF Max.
Level Of Drive	1 - 500 nW (100nWtypical)
Frequency Aging (at 25 °C)	± 3 ppm/year Max.

EquivalentSeriesResistance(ES^^^^AHQ^^^AH

Fundamental		
3.579545 ~4 MHz	150 Q Max.	2
4 ~ 5 MHz	120 Q Max.	2
5 ~6MHz	100 Q Max.	
6 ~ 7 MHz	80 Q Max.	
7~10MHz	60 Q Max.	
10~27MHz	40 Q Max.	

Dimensions

扬兴愿景: 与员工客户共成长, 共圆中华电子梦!

直插金属表面石英晶体谐振器 DIP Metal Surface Quartz Crystal Resonator

3rd Overtone

 $20\sim 25\ MHz$ $25\sim 64\ MHz$ 100 Q Max. 80 0 Max.

Units: mn

YT-26

直插金属表面石英晶体谐振器 DIP Metal Surface Quartz Crystal Resonator

Features

- External dimensions: 2.0 x 6.0 mm.
- ■Frequency range: 32.768KHz.
- -Frequency tolerance(standard): ±10ppm.
- , Excellent Reliability Performance.
- , Applications: clock and Microcomputer.

Electrical Specifications

Item / Type J	
	32.768 KHz
Load Capacitance	12.5PF, or specify
Frequency Tolerance (at 25 °C)	±10 ppm, ± 20 ppm, or specify
Frequency Versus Temperature Characteristics	0~-120ppm, or specify
Turnover Temperature	-(0.036±0.01)ppm/°C ^A 2
Operating Temperature	-20 ~ + 70 °C, - 40 ~ + 85 'C, or specify
Storage Temperature	-40-+85 °C, or specify
Shunt Capacitance	1.6pF Max.
Level Of Drive	1 - 100 uW(1.0uWTyp)
Insulation Resistance	More Than 500MQ at DC 100V
Frequency Aging (at 25 °C)	± 3 ppm/year Max.

Equivalent Series Resistance(ESR)

• Mounting of cylinder type products:

Soldering the body of the cylinder type crystal units with PCB must be avoided due to deteriorate the characteristics or damage Soldering the body of the cylinder type crystal units with PCB must be avoided due to the products. Rubber adhesive is recommended.

Soldering

Lead wires should be soldered within 3 seconds with the soldering iron heated to a temperature no higher than 300°C

Ť

「扬兴晶振]

YT-38

Features

-External dimensions: 3.0 x 8.0 mm. ■Frequency range: 32.768KHz.

Excellent Reliability Performance.

Applications: clock and Microcomputer.

Electrical Specifications Item / Type J oad Capacitance Frequency Tolerance (at 25 [#]C) Frequency Versus Temperature Characteristics Turnover Temperature -(0. Operating Temperature -20 -40 Storage Temperature Shunt Capacitance 1.8 Level Of Drive Insulation Resistance Mo

Equivalent Series Resistance(ESR)

Fundamental

Frequency Aging (at 25 °C)

32.768 KHz

Dimensions

• Mounting of cylinder type products: deteriorate the characteristics or damage

the products. Rubber adhesive is recommended.

Soldering

Lead wires should be soldered within 3 seconds with the soldering iron heated to a temperature no higher than 300°C

一扬兴使命: 高效为客户提供时钟频率器件解决方案。

直插金属表面石英晶体谐振器 DIP Metal Surface Quartz Crystal Resonator

■ Frequency tolerance(standard): ±10ppm.

2.768 KHz
2.5PF, or speccify
0 ppm, ± 20 ppm,or specify
120 ppm, or specify
0.03610.01)ppm/°C ^A 2
$0 \sim +70$ °C, - $40 \sim +85$ °C, or specify
0~+85°C, or specify
8pF Max.
~ 100 uW(1.0 nWTyp)
fore Than 500MQ at DC 100V
3 ppm/year Max.

40KQMax.

+ 7

Units: mm(±0.1 mm)

「扬兴晶振」 HC-49XSMD

贴片金属表面石英晶体谐振器 SMD Metal Surface Quartz Crystal Resonator

Ť

「扬兴晶振]

HC-49SMD

Features

- -External dimensions: 11.4x4.8 x 3.8 mm. • High frequency pullability and low equivalent series resistance. • Applications: PC, STB, LCDM and Cable Modem.

- -Frequency range: 3.2768MHz ~ 64MHz. • Surface mount type crystal units. • A great number of standard frequencies. -Highly mass production capability.

Electrical Specifications		
J IHC-49SMD		
3.2768 ~ 64MHz		
AT Fundamental		
12pE 20pC or specify		
± 10 ppm, ± 20 ppm, or specify		
± 20 ppm, or specify		
$-20 \sim +70 \ ^{\#}C_{f} - 40 \sim +85 \ ^{\circ}C$, or specify		
-40 \sim +85°C _f or specify		
7 pF Max.		
1 - 500 nW(100uWtypical)		
± 3 ppm/year Max.		

rEquivalentSerie5Resistance(ESR)^^^^B9^^^M

1 Fundamental		K Overtone		,
3.2768 ~ 4 MHz	180 O Max.	20 ~ 25 MHz	100 Q Max.	
4 ~ 5 MHz	120 0 Max.	25-64 MHz	80 Q Max.	
5 ~6 MHz	100 <i>Q</i> Max.			
6~7 MHz	80 O Max.			
7~10MHz	60 <i>Q</i> Max.			
10~27MHz	40 Q Max.			

Dimensions

Features

- External dimensions: 6.1x4.0x 2.0mm.
- ■Frequency range: 8MHz~50MHz.
- Surface mount type crystal units.
- A great number of standard frequencies.
- High frequency pullability and low equivalent series resistance. -Highly mass production capability.
- Applications: PC, STB, LCDM and Cable Modem.

Item / Type	J I HC-49XSMD
Nominal Frequency Range	8-50MHZ
Vibration Mode	AT Fundamental
Load Capacitance	12pE 20pE or specify
Frequency Tolerance (at 25 *C)	± 10 ppm, ± 20 ppm, or specify
Frequency Versus Temperature Characteristics	± 20 ppm, or specify
Operating Temperature	-20 \sim + 70 °C, - 40 \sim + 85 °C _f or specify
Storage Temperature	-40 ~ +85 ,C, or specify
Shunt Capacitance	5 pFMax.
Level Of Drive	0.01-1000 nW
Frequency Aging (at 25 °C)	\pm 3 ppm/year Max.

Equivalent Series

Resistance(ESR)

8.000-11.999MHz	80 Q Max.
12.000-15.999MHz	60 Q Max.
16.000-19.000 MHz	50 Q Max.
20.000-50.000 MHz	40 Q Max.

Dimensions

Bottom View

Units: mm

贴片金属表面石英晶体谐振器 SMD Metal Surface Quartz Crystal Resonator

Top View Suggested Layout

Units: mm

13

YSX1210SL

Features

贴片金属表面石英晶体谐振器 SMD Metal Surface Quartz Crystal Resonator

「扬兴晶振]

YSX1612SL

Features

- External dimensions: 1.20 x 1.00 x 0.35 mm.
- Standard Frequency: 32~60MHz.
- Ultra-thin thickness 0.35mm.
- Excellent heat resistance and environmental characteristics.
- -Applications: mobile phone, Bluetooth,W-LAN ISM band radio,dock for MPU GPS, smart phone.

Electrical Specifications Item / Type

Electrical Specifications Item / Type		
	.YSX1210SL	j
Vibration Mode	AT Fundamental	
Load Capacitance	8pR10pF, or specify	
Frequency Tolerance (at 25 °C)	± 10 ppm, ± 30 ppm, or specify	
Frequency Versus Temperature Characteristics	±20 ppm, or specify	
Operating Temperature	$-30 \sim +85$ °C, or specify	
Storage Temperature	-40 ~+85 ,C,or specify	
Shunt Capacitance	3 pF Max.	
Level Of Drive	50 nW Max	
Frequency Aging (at 25 °C)	± 2 ppm / year Max.	

Equivalent Series Resistance(ESR)

Fundamental

32-40 MHz	150 Q Max.
41 ~ 60 MHz	100 Q Max.

Dimensions

her

Electrical Specifications Item / Type		
	VSX1612SL	
Vibration Mode	AT Fundamental	
Load Capacitance	8pB10pF, or specify	
Frequency Tolerance (at 25 *C)	± 10 ppm, ± 30 ppm, or specify	
Frequency Versus Temperature Characteristics	±20 ppm, or specify	
Operating Temperature	-20 - + 70 °C , - 40 - + 85 ,C f or specify	
Storage Temperature	-40 - + 85 °C, or specify	
Shunt Capacitance	3 pF Max.	
Level Of Drive	50 uWMax	
Frequency Aging (at 25 °C)	± 2 ppm/year Max.	

Equivalent Series Resistance(ESR)

24-40 MHz	150
41- 60 MHz	100

Dimensions

Units: mm

贴片金属表面石英晶体谐振器 SMD Metal Surface Quartz Crystal Resonator

• External dimensions: 1.60x 1.20x0.35mm. -Standard Frequency: 24~60MHz. • High precision and high frequency stability. -Excellent heat resistance and environmental characteristics. -Applications: mobile phone, Bluetooth, W-LAN ISM band radio, clock for MPU GPS, smart phone.

	Fundamenta
Q Max.	
Q Max.	

1×C 54.000

01971

YSX211SL

贴片金属表面石英晶体谐振器 SMD Metal Surface Quartz Crystal Resonator

Features

- External dimensions: 2.05 x 1.65 x 0.50mm.
- -Standard Frequency: 16~54MHz.
- High precision and high frequency stability.
- Excellent heat resistance and environmental characteristics.
- Applications: mobile phone, Bluetooth, W-LAN ISM band radio,clock for MPU GPS,smart phone.

Electrical Specifications

Item / Type J	I YSX211SL
	I
Vibration Mode	AT Fundamental
Load Capacitance	8pR 9pF, 12pF, or specify
Frequency Tolerance (at 25 °C)	± 10 ppm, ± 15 ppm, ± 20 ppm, or specify
Frequency Versus Temperature Characteristics	±20 ppm, or specify
Operating Temperature	-20 \sim + 70 °C , - 40 \sim + 85 °C $_{\rm r}$ or specify
Storage Temperature	$-40 \sim +85 \text{ °C}$, or specify
Shunt Capacitance	3 pF Max.
Level of Drive	10-200 W Max.(10uW typical)
Frequency Aging (at 25 °C)	± 3 ppm/year Max.

Equivalent Series Resistance(ESR)

]	Fundamental		
	16~30MHz	100 Q Max.	
	30 ~ 54 MHz	80 Q Max.	

Dimension S

Units: mm

1tc

54.000

「扬兴晶振]

YSX221SL

Features

- -Frequency range: 12MHz~54MHz.

Electrical Specifications	
Item / Type	JIY
Nominal Frequency Range	12 ~
Vibration Mode	AT
Load Capacitance	12p
Frequency Tolerance (at 25 [#] C)	± 10
Frequency Versus Temperature Characteristics	±20
Operating Temperature	-20
m / Type minal Frequency Range ration Mode d Capacitance quency Tolerance (at 25 [#] C) quency Versus Temperature Characteristics erating Temperature rage Temperature nt Capacitance el of Drive quency Aging (at 25© uivalent Series Resistance(ESR)	-40
Shunt Capacitance	3 pF
Level of Drive	1-20
Frequency Aging (at 25©	± 3 ·
Equivalent Series Resistance(ESR)	
Fundamental	

1		L
	12 ~ 14 MHz	15
	14-30 MHz	10
	30-48 MHz	
	48 ~ 54 MHz	

Dimensions

贴片金属表面石英晶体谐振器 SMD Metal Surface Quartz Crystal Resonator

• External dimensions: 2.55x2.05 x 0.55mm. • High precision and high frequency stability. • Excellent heat resistance and environmental characteristics. -Applications: mobile phone, Bluetooth, W-LAN ISM band

radio, clock for MPU GPS, smart phone.

YSX221SL

~ 54 MHz Fundamental

pF= 20p6 or specify

10 ppm_f \pm 20 ppm, or specify

0 ppm, or specify

 $0 \sim +70$ °C, - 40 $\sim +85$ °C, or specify

 $\sim + 85$ °C f or specify

F Max. 200 uW Max. (100uW typical)

ppm/year Max.

150 O Max. 100 Q Max. 60 Q Max. 50 Q Max.

Top View Crystal Connection

Top View Suggested Layout

YSX321SL

贴片金属表面石英晶体谐振器 SMD Metal Surface Quartz Crystal Resonator

Features

- External dimensions: 3.2x2.5 x 0.7 mm.
- -Frequency range: 8MHz~64MHz.
- High precision and high frequency stability.
- Extremely good for reducing EMI effect.
- RoHS Compliant/Pb Free.
- The best choice of Bluetooth, wireless communication set, DSC, PDA and mobile phone.

Electrical Specifications

THE

12.0 200

Item / Type J	[YSX321SL
Vibration Mode	AT Fundamental
Load Capacitance	12pF; 20pB or specify
Frequency Tolerance (at 25 °C)	\pm 10 ppm, \pm 20 ppm, or specify
Frequency Versus Temperature Characteristics	±20 ppm, or specify
Operating Temperature	-20 ~ + 70 °C f - 40 ~ + 85 °Cf or specify
Storage Temperature	$-40 \sim +85$ ⁸ C f or specify
Shunt Capacitance	7 pF Max.
Level Of Drive	1-100 uW Max. (10uW typical)
Frequency Aging (at 25 °C)	± 3 ppm/year Max.
Insulation Resistance	More Than 500MQ at DC 100V

Equivalent Series Resistance(ESR)

Fundamental		
8 - 11.2892 MHz	150Q Max.	
12~ 16MHz	80 Q Max.	
17-64 MHz	50 Q Max.	

「扬兴晶振]

YSX531SL

Features

• External dimensions: 5.0x3.2 x 0.9 mm. -Frequency range: 8MHz~54MHz. -Higher frequency stability and reliability. -Excellent for reducing EMI effect.

Electrical Specifications	_	
Item / Type	J	,]
Vibration Mode		AT
Load Capacitance		12p1
Frequency Tolerance (at 25 °C)		± 10
Frequency Versus Temperature Characteristics		±20
Operating Temperature		-20
Storage Temperature		-40
Shunt Capacitance		7 pF
Level Of Drive		1-10
Frequency Aging (at 25 °C)		± 3
Insulation Resistance		Mor

Equivalent Series Resistance(ESR)

Fundamental			
8 ~ 12 MHz	60 C - 80 Q		
12 -25 MHz	40 Q ■ 60 Q		
25 -54 MHz	30 Q - 40 Q		

Dimensions

扬兴愿景: 与员工客户共成长, 共圓中华电子梦!

贴片金属表面石英晶体谐振器 SMD Metal Surface Quartz Crystal Resonator

• High precision characteristics covering up to wide frequency range. -The best choice of Bluetooth, wireless communication set, DSC, PDA, mobile phone and USB interface card.

YSX531SL

Fundamental
B 20pB or specify
0 ppm, \pm 20 ppm _f or specify
) ppm, or specify
\sim + 70 °C, - 40 \sim + 85 °C _f or specify
$\sim + 85 \text{ °C}$, or specify
F Max.
00 nW Max. (10uWtypical)
ppm/year Max.
re Than 500MQ at DC 100V

扬兴价值观:品质为本,服务为根。

YST310S

32.768KHZ 贴片金属表面石英晶体谐振器 SMD 32.768KHZ Metal Surface Quartz Crystal Resonator

Features

-External dimensions: 3.20x 1.50 x 0.75 mm.

- Standard Frequency: 32.768KHz.
- , Applications in mobile phone. Notebook and RTC.

Electrical Specifications

Item / Type	J [YST3105	j
Frequency Tolerance(at 25 °C)	± 10 ppm , or specify	
Load Capacitance (CL)	12.5 pF, or specify	
Parabolic Coefficient (B)	(-0.03±0.01)*10 ⁶ /°C ²	
Turnover Temperature (Ti)	25 °C ±5 °C	
Operation Temperature Range	-40-+85°C	
Shunt Capacitance (CO)	1.0pF typical	
Motional Capacitance (C1)	3.4fF typical	
Level Of Drive	1.0 nW	
Frequency Aging (at 25 *C)	± 3 ppm/year Max.	
Storage Temperature	-55~ + 125°C	

Equivalent Series Resistance(ESR)

YST310S 70KQMax.

Features -Standard Frequency: 32.768KHz. reference clocks.

Item / Type	1 YSX1610SK	
Standard Frequency	32.768KHZ	
Frequency Tolerance(at 25 °C)	\pm 20 ppm , or specify	
Load Capacitance (CL)	12.5 pF,or specify	
Parabolic Coefficient (B)	$(-0.03 \pm 0.01)*10^{6}/^{\circ}C^{2}$	
Turnover Temperature (Ti)	$25 \text{ °C} \pm 5 \text{ °C}$	
Operation Temperature Range	-40-+85°C	
Shunt Capacitance (CO)	1.3pF typical	
Motional Capacitance (C1)	7.5fF typical	
Level Of Drive	0.1 nW	
Frequency Aging (at 25 °C)	\pm 3 ppm/year Max.	
Storage Temperature	-55∼ + 125°C	

Equivalent Series Resistance(ESR)

YSX1610SK 90KQMax.

Dimensions

Side Vie

Top View Crystal Connection

Layout

Marking: "YXC32XX" or "OXXXX"

Dimensions

32.768KHZ 贴片金属表面石英晶体谐振器 SMD 32.768KHZ Metal Surface Quartz Crystal Resonator

32.768KHZ 贴片金属表面石英晶体谐振器 SMD 32.768KHZ Metal Surface Quartz Crystal Resonator

1×C000

918A1

YSX1612SC

Features

- -Standard Frequency: 24~60MHz.
- -Reflow is possible. • AEC-Q200 qualified.

Storage Temperature	-55~ + 125°C	
Electrical Specifications		
Item / Type	[YSX1612SC	
Vibration Mode	AT Fundamental	
Load Capacitance	8pF; 10pF,or specify	
Frequency Tolerance (at 25 *C)	± 10 ppm, ± 30 ppm, or specify	
Frequency Versus Temperature Characteristics	±50 ppm, or specify	
Operating Temperature	$-40 \sim + 125^4 C_f$ or specify	
Storage Temperature	-40 ~ +125 ,C , or specify	
Shunt Capacitance	3 pF Max.	
Level Of Drive	50 nW Max	
Frequency Aging (at 25 °C)	± 2 ppm/year Max.	

Features

External dimensions: 2.00x 1.20x 0.60mm.

- -Standard Frequency: 32.768KHz.
- Applications in mobile phone. Notebook and DSC.

Electrical Specifications

Item / Type J	J J
Frequency Tolerance(at 25 °C)	± 20 ppm , or specify
Load Capacitance (CL)	12.5 pF,or specify
Parabolic Coefficient (B)	$(-0.03 \pm 0.01)^* 10^{-6} / ^{\circ}C^2$
Turnover Temperature (Ti)	25 °C ± 5 °C
Operation Temperature Range	-40-+85°C
Shunt Capacitance (CO)	1.3pF typical
Motional Capacitance (C1) Level Of Drive	7.0fF typical 0.1 RW
Frequency Aging (at 25 °C)	± 3 ppm/year Max.

Equivalent Series Resistance(ESR)

YSX2012SK 90KQMax.

24.0-40.0 MHz 150 □ Max.

Dimensions

Suggested Layout

Units: mm

22

车展属表面石英晶体谐振器 SMD AEC-Q200 Metal Surface Quartz Crystal Resonator

• External dimensions: 1.60 x1.20 x 0.35mm.

-Applications: Bluetooth, GPS, Automotive electronics Industrial electronics

Fundamental

41.0-66.0 MHz

100 Q Max.

Top View Crystal Connection

Top View Suggested Layout

YSX211SC

车规级贴片金属表面石英晶体谐振器 SMD AEC-Q200 Metal Surface Quartz Crystal Resonator

100 Q Max.

60 Q Max.

YSX221SC

Features

Features

200 Q Max.

120 Q Max.

-External dimensions: 2.00 x 1.60 x 0.45 mm. -Standard Frequency: 16 ~72MHz. -Reflow is possible. -AEC-Q200 qualified. -Applications: Bluetooth, GPS, Automotive electronics Industrial electronics

Electrical Specifications

Frequency Tolerance (at 25 °C)

Frequency Versus Temperature Characteristics

Itom / Tuno

Vibration Mode

Standard Frequency

Load Capacitance

Operating Temperature

Frequency Aging (at 25 °C)

Storage Temperature

Shunt Capacitance Level Of Drive

Dimensions

-External dimensions: 2.50 x 2.00 x 0.55 mm. -Standard Frequency: 12~80MHz. ■ Reflow is possible. -AEC-Q200 qualified. -Applications: Bluetooth, GPS, Automotive electronics Industrial electronics

Item / Type	1 I YSX211SC	
Standard Frequency	16-72 MHz	
Vibration Mode	AT Fundamental	
Load Capacitance	8pB10pF, or specify	
Frequency Tolerance (at 25 °C)	\pm 10 ppm, \pm 30 ppm, or specify	
Frequency Versus Temperature Characteristics	±50 ppm, or specify	
Operating Temperature	$-40 \sim + 125^{\circ}C_{f}$ or specify	
Storage Temperature	$-40 \sim \pm 125$ °C , or specify	
Shunt Capacitance	3 pF Max.	
Level Of Drive	100uWMax	
Frequency Aging (at 25 °C)	± 2 ppm / year Max.	

Equivalent Series Resistance(ESR)

$12.0 \sim 15.0 MHz$	180 Q Max.	
16.0 -20.0MHz	150 Q Max.	

Dimensions

Equivalent Series Resistance(ESR)

 $16.0\sim 20.0\ MHz$

21.0 -25.0 MHz

FundamentalFundamental

26.0~40.0MHz

41.0-72.0 MHz

3

Bottom View

扬兴愿景: 与员工客户共成长, 共圆中华电子梦!

车规级贴片金属表面石英晶体谐振器 SMD AEC-Q200 Metal Surface Quartz Crystal Resonator

L^{1 YSX221SC} 2-80 MHz AT Fundamental 8pE10pF,or specify \pm 10 ppm, \pm 30 ppm, or specify 50 ppm, or specify -40 ~ + 125°C, or specify -40 - +125 °C f or specify 3 pF Max. 100uW Max ± 2 ppm/year Max.

Top View CrystsJ Connection

Top View Suggest Layout

YSX321SC

External dimensions: 3.20x2.50x 0.70mm.

-Applications: Bluetooth, GPS, Automotive electronics

AT Fundamental 8pF,12pF,or specify

±50 ppm, or specify $-40 \sim + 125^{\circ}$ C, or specify

3 pF Max.

200 nW Max

± 2 ppm/year Max.

-40 ~ +125,C f or specify

 ± 10 ppm, ± 30 ppm, or specify

J I YSX321SC

-Standard Frequency:8.0-66MHz.

• Low impedance performance.

•AEC-Q200 qualified.

Industrial electronics

Features

车援鼬展属表面石英晶体谐振器 SMD AEC-Q200 Metal Surface Quartz Crystal Resonator

「扬兴晶振]

YSX530SC

Features

- -Standard Frequency: 7.6~54MHz.
- AEC-Q200 qualified.

Electrical Specifications

Ť

Item / Type J	I YSX530SC J
Vibration Mode	AT Fundamental
Load Capacitance	18pF, 20pF, or specify
Frequency Tolerance (at 25 °C)	\pm 10 ppm, \pm 30 ppm, or specify
Frequency Versus Temperature Characteristics	±50 ppm, or specify
Operating Temperature	$-40 \sim +125^{\circ}$ C, or specify
Storage Temperature	-40 ~ +125 *C , or specify
Shunt Capacitance	5 pF Max.
Level Of Drive	300 nW Max
Frequency Aging (at 25 *C)	± 2 ppm/year Max.

Equivalent Series Resistance(ESR)

Electrical Specifications

Frequency Tolerance (at 25 °C)

Frequency Versus Temperature Characteristics

Hem / Type Vibration Mode

Load Capacitance

Operating Temperature Storage Temperature

Frequency Aging (at 25 °C)

Shunt Capacitance

Level Of Drive

					Fundamental	
8.0~9.9MHz	800 Q Max.	12.0-12.9 MHz	100 Q Max.	21.0-29.9 MHz	60 Q Max.	
10.0 -10.9MHz	250 Q Max.	13.0-15.9 MHz	80 <i>Q</i> Max.	30.0 ~ 66.0 MHz	50 Q Max.	
11.0~11.9MHz	150Q Max.	16.0-20.9 MHz	70 Q Max			

Dimensions

Units: mm

Dimensions

Equivalent Series Resistance(ESR)

7.6 -11.9 MHz

12.0 -13.9MHz

YXC #1 XX.000 XXXXXX

100 Q Max.

60 Q Max.

扬兴使命: 高效为客户提供时钟频率器件解决方案。

牟展属表面石英晶体谐振器 SMD AEC-Q200 Metal Surface Quartz Crystal Resonator

• High resolution frequency tolerance is obtained.

-Applications: Bluetooth, GPS, Automotive electronics Industrial electronics

1 VSY53080

		Fundamental
14.0 -19.9 MHz	50 Q Max.	
20.0 ~ 54.0 MHz	40 Q Max.	

扬兴愿暑,与员丁客户共成长,共圆中华由子梦!

T0I-#2

Connection (Top View)

8.000

918BAC

车规鼬展属表面石英晶体谐振器 SMD AEC-Q200 Metal Surface Quartz Crystal Resonator

Features

- External dimensions: 5.00 x 3.20 x 0.85 mm.
- -Standard Frequency: 7.6~54MHz.
- High resolution frequency tolerance is obtained.
- AEC-Q200 qualified.
- -Applications: Bluetooth, GPS, Automotive electronics Industrial electronics

Electrical Specifications

Item / Type	I YSX531SC	J
Vibration Mode	AT Fundamental	
Load Capacitance	18 pF, 20pF,or specify	
Frequency Tolerance (at 25 °C)	\pm 10 ppm, \pm 30 ppm, or specify	
Frequency Versus Temperature Characteristics	±50 ppm, or specify	
Operating Temperature	-40 ~ + 125°C, or specify	
Storage Temperature	$-40 \sim +125 \text{*C}$, or specify	
Shunt Capacitance	5 pF Max.	
Level Of Drive	300 nW Max	
Frequency Aging (at 25 *C)	± 2 ppm/year Max.	

Equivalent Series Resistance(ESR)

F	un	lamen	tal

7.6 -11.9 MHz	100 Q Max.	14.0-19.9 MHz	50 Q Max.
12.0-13.9MHz	60 Q Max.	20.0-54.0 MHz	40 Q Max.

Dimensions

(Bottom View)

#4

Units: mm

「扬兴晶振]

YSX530GA

Features

- External dimensions: 5.0x3.2 x 1.2 mm. -Frequency range: 8MHz~54MHz. • 2 pads SMD glass sealed crystal units.
- High reliable environmental performance.
- Tight tolerance and stability parts are available.

Electrical Specifications

C

12.0

I Item / Tvpe	I YSX530GA	
Nominal Frequency Range	8 ~54 MHz	
Vibration Mode	AT Fundamental	
Load Capacitance	12pE 20pE or specify	
Frequency Tolerance (at 25 °C)	\pm 10 ppm, \pm 20 ppm, or specify	
Frequency Versus Temperature Characteristics	±20 ppm, or specify	
Operating Temperature	$-20 \sim +~70~^{\rm o}{\rm C}$, $-~40 \sim +~85~^{\rm o}{\rm C},$ or specify	
Storage Temperature	-40 ~ + 85 *C r or specify	
Shunt Capacitance	7 pF Max.	
Level Of Drive	1-100 pi W Max. (10 uW typical)	
Frequency Aging (at 25 °C)	\pm 3 ppm/year Max.	
Insulation Resistance	More Than 500MQ at DC 100V	

Equivalent Series Resistance(ESR)

Fundamental	
8 ~12MHz	60
12~25MHz	40
25-54 MHz	30

Dimension S

0.9

#3

贴片陶瓷表面石英晶体谐振器 SMD Ceramic Surface Quartz Crystal Resonator

- Designed for automatic mounting and reflow soldering.
- Reasonable cost and good delivery performance.
- Contains Pb in sealing glass exempted by RoHS directive.
- -The best choice of portable PC, PDA, DSC, and USB interface card.

0 Q ~ 80 Q	
0 Q ~ 60 Q	
0 Q ~ 40 O	

Top View Suggested Layout

Electrical Specifications

[Item / Type	I YSX146GA/YSX306GA	
Nominal Frequency Range	32.768 KHz	
Vibration Mode	+2°X-cut Fundamental	
Load Capacitance	12.5pF, or specify	
Frequency Tolerance (at 25 °C)	± 20 ppm , or specify	
Operating Temperature	$40 \sim + 85^{\circ}C$	
Storage Temperature	-55~ + 125°C	
Shunt Capacitance	2.0pF typical	
Level of Drive	1.0 nW Max.	
Frequency Aging (at 25 °C)	± 5 ppm/year Max.	
Turnover Temperature	$25 ^{\circ}\text{C} \pm 5 ^{\circ}\text{C}$	
Temperature Coefficient	$-0.036 \pm 0.006 \text{ppm/}^{\circ}\text{C}^2$	
Motional Resistance	65KO Max (YSX146GA) / 50KO Max(YSX306GA)	
Motional Capacitance	3.0 fF typical	

Dimension

S

• YSX306GA

「扬兴晶振」

Features

5.0*3.2 7.0*5.0mm

Electrical Specifications			
Item / Type	J	I YS	
		I	
Output Type		СМ	
Supply Voltage		1.8V	
Oscillation Mode		Fund	
Frequency Tolerance (at 25°C)		±10	
Output Load		15 p	
Operating Temperature Range		-40~	
Frequency Versus Temperature Characteristics		± 2	
Storage Temperature Range		-55-	
Voltage Vol (Max.)/Vol (Min.)		90%	
Symmetry		45-5	
Rise (Tr)/Fall (Tf) Time		4ns]	
Start-up Time		3ms	
Supply Current		See	
Frequency Aging (at 25°C)		± 3 1	

Dimensions

PA	D	#1	#2	#3	#4
FUNC	TION	Tri-state	GND	OUTPUT	VDD

Notes

1. To maintain stable operation provide a 0.01uF to 0.1uF by-pass capacitor at a location as near as possible to the power source terminal of the crystal product (between Vcc-GND)

Package Size - Dimensions(Unit:mm)

1.6x1.2x0.60mm

#3

#2

贴片金属表面振荡器 SMD Metal Surface Oscillator

-Package Size: 1.6*1.2 2.0*1.6 2.5*2.0 3.2*2.5

-Frequency range: 1 MHz ~ 54MHz.

• Ultra Small SMD seam sealed crystal oscillator units.

• Applications: WLAN, Bluetooth, DSC, DSL and other IT product.

SO110TR

IOS
V-3.3V
ıdamental
)ppm _f ±20ppm, or specify
pF, or specify
~+85°C,-40~+125*Cfor specify
20ppm, ± 30ppm _f ± 50ppm, or specify
- + 125 °C
6Vdd min./10%Vdd max
55%
Max.
sMax.
Below
ppm/year Max.

Figure 1. Pin Assignments

Recommended layout Pattern (Unit:mm)

「扬兴晶 **YSO110TR**

Package Size - Dimensions(Unit:mm)

振」

3.2x2.5xi .00mm

Side View

5.08

Bottom View

0.9 0.5

Recommended layout Pattern (Unit:mm)

贴片金属表面振荡器

0.9

SMD Metal Surface Oscillator

TOP View Suggested Layout

Ш

rz

TOP View Suggested Layout

Ň

「扬兴晶振]

YSO130HR

Features

- •Package Size: 3.2*2.5 5.0*3.2 7.0*5.0mm • Frequency range: 1MHz~100MHz. • Ultra Small SMD seam sealed crystal oscillator units.
- \bullet Applications: WLAN_fBluetooth,RTC_f DSL and other IT product.
- Tri-state function available

Item / Type	J I YSO130HR
Output Frequency Range	1MHz~100MHz
Output Type	CMOS
Supply Voltage	5V,or specify
Oscillation Mode	Fundamental
Frequency Tolerance (at 25°C)	±10ppm _f ±20ppm
Output Load	15 pF, or specify
Operating Temperature Range	-40~ +85 °C, or s
Frequency Versus Temperature Characteristics	± 20ppm, ± 30ppi
Storage Temperature Range	-55~ + 125 'C
Voltage Vol (Max.)/Vo I (Min.)	90%Vdd min./109
Symmetry	45-55%
Rise (Tr)/Fall (Tf)Time	4ns Max.
Start-up Time	3 ms Max.
Supply Current	See Below
Frequency Aging (at 25°C)	± 3 ppm/year Max

Dimensions

PAD	#1	#2	#3	#4
FUNCTION	Tri-state	GND	OUTPUT	VDD

Notes:

1. To maintain stable operation provide a 0.01 uF to 0.1uF by-pass capacitor at a location as near as possible to the power source terminal of the crystal product (between Vcc-GND)

Package Size ~ Dimensions(Umt:mm)

3.2x2.5x1.00mm

Hz~100MHz
IOS
or specify
ndamental
0ppm _f ±20ppm, or specify
pF, or specify
~ +85 °C, or specify
0ppm, ± 30ppm, ± 50ppm, or specify
~ + 125 'C
%Vdd min./10%Vdd max
55%
Max.
ns Max.
Below
ppm/year Max.

Recommended layout Pattern (Umt:mm)

TOP View Suggested Layout

贴片金属表面振荡器 SMD Metal Surface Oscillator

Ť

「扬兴晶振]

YSO120TK

Features

- -Tri-state function available

Electrical Specifications	
Item / Type	JIY
Output Frequency Range	32.7
Output Type	СМ
Supply Voltage	1.85
Oscillation Mode	Fun
Frequency Tolerance (at 25°C)	±10
Output Load	15 g
Operating Temperature Range	-40-
Frequency Versus Temperature Characteristics	± 20
Storage Temperature Range	-55-
Voltage Vol (Max.)/Vo I (Min.)	90%
Symmetry	45-5
Rise (Tr)/Fall (Tf)Time	30n
Start-up Time	3 m
Supply Current	See
Frequency Aging (at 25°C)	± 3

Dimensions

PAD)	#1	#2	#3	#4
FUNCTI	ION	Tri-state	GND	OUTPUT	VDD

Notes:

1. To maintain stable operation provide a 0.01 uF to 0.1uF by-pass capacitor at a location as near as possible to the power source terminal of the crystal product (between Vcc-GND)

Package Size ~ Dimensions(Umt:mm)

1.6x1 2x0.60mm

Package Size - Dimensions(Umt:mm)

5.0x3.2x1.2umm

П

Recommended layout Pattern (Unit:mm)

7.0x5.0x1.30mm

★ INPUT CURRENT

Vdc=5V 15pF only				
^^^Voltage	5V			
Frequenc^^Size	7050/5032	3225		
1-36MHZ	8mA max	8mA max		
36~70MHZ	20mA max	20mA max		
70-100MHZ	55mA max	25mA max		

-Package Size:1.6*1.2 2.0*1.6 2.5*2.0 3.2*2.5 5.0*3.2 7.0*5.0mm • Frequency range: 32.768KHz. ■ Ultra Small SMD seam sealed clock crystal oscillator units.

• Applications: WLAN, Bluetooth, RTC, DSL and other IT product.

YSO120TK .768KHZ MOS 3V-3.3V ndamental 0ppmf ±20ppm, or specify pF, or specify 0-+85 °C, -40~+125°C , or specify 20ppm, \pm 30ppm, \pm 50ppm, or specify 5~ + 125 °C %Vdd min./10%Vdd max -55% ns Max. ns Max. e Below ± 3 ppm/year Max.

Recommended layout Pattern (Umt:mm)

Top View Suggested Layout

rz :

rz :

贴片金属表面振荡器 SMD Metal Surface Oscillator

Recommended layout Pattern (Unit:mm)

Top View Suggested Layout

Top View Suggested Layout

Ť

「扬兴晶振]

YSO230LR

Features

-External dimensions: 2.5x2.0x1.1mm 3.2x2.5x1.2mm 5.0x3.2x1.3mm 7.0x5.0x1.6mm.

-Frequency range: 13.5MHz ~200MHz. • Output LVPECL or LVDS .

Electrical Specifcations

THE

13.500 018EBV

Item / Type ■ <i>1</i>	LVI ,7050/5032	PECL 3225/2520 」	705	
Output Frequency Range	13.5-200MHZ	13.5-156.25MHZ	13.5-2	
Supply Voltage	2.5V-	3.3V		
Operating Temperature Range		-40~ +	⊦ 85°C	
Storage Temperature Range		-55- +	125°C	
Total Stability		±50	ppm	
Current consumption	80mA Max	50mA Max	60m	
Disable Current		10p A	AMax	
	VOH=Vo	c-1.03 Min		
Output Voltage (LVPECL)	VOL=Vcc-1.6 Max			
		_	V	
Output Voltage (LVDS)		—		
		V		
Output Load Condition	L PEC			
		_		
lutput Voltage		VIH=70% VccMin,	VIL=3	
Output Symmetry		45-:	55%	
Rise Time/Fall Time		0.8nS Max		
Start-up time	10mS			
Aging		±3p	opm	
Phase Jitter (12KHZ-20MHZ)	100MHZ	125MHZ	I 14	
	0.3ps Typ.			

Dimension

S

PAD	#1	#2	#3	#4	#5	#6
FUNCTION	OE	NC	GND	OUT+	OUT-	VDI

1. To maintain stable operation provide a 0.01 uF to 0.1 uF by-pass capacitor at a location as near as possible to the power source terminal of the crystal productt between Vcc-GND)

贴片金属表面振荡器 SMD Metal Surface Oscillator

■ Quartz Crystal Differential Oscillator.

•High precision characteristic covering up to wide frequency range.

•High stability; low jitter, low power consumption.

-Applications: 10 GB Ethernet, SONET, SATA, SAS, Fibre Channel

LVDS			
50/5032 3225/2520		Rema	
	I	L	i
-200MHZ	13.5-156.25MHZ		
1.8V, 2	.5V-3.3V		
mA Max	40mA Max	OE=Vcc _f LVPECL=(50) Q	or LVDS=(100) Q
		OE=G	ND
	_		
	-	DC	characteristics
VOD= 247-	~454mV	VOD1, VOD2	
dVOD=501	nV Max.	dVOD= I VOD1-VOD2 I	DC characteristics
VOS= 1.125	-1.375V	VOS1.VOS2	
dVOS=50r	nV Max.	dVOS= I VOS1-VOS2 I	
-	_	Terminated to Vcc-2.0V	
L LV	DS=100Q	Connected between OUT to OUT	
30%Vcc Ma	x	OE termi	inal
		LVPECL: Between 20%ar (VOH-VOL), LVDS:Betw Differential Output peak to	een 20% and 80%
		Time at minimum supply v	voltage to be 0 s
		25°C,First year, Vcc	=2.5V,3.3V
48.5MHZ	156.25M	HZ 180MHZ	200MHZ

0.1 ps Typ.

6 DD

Figure 1. Pin Assignments

'扬兴晶振]

YSO230LR

20

3.2x2.5x1.20mm

Side View

5 毎 Q.2

YYP

XX.000

-XXXXX

Top View

Side View

 7.0 ± 0.2

5

YXC

XX.000

2 Top View

Side View

<u>5. 'j ...</u>

7.0x5.0x1.60m

6

m

5.0x3.2x1.30mm

E. 5

2±0.2

 5.0 ± 0.2

1.3 ± 0.2

Botton View

0.64

1.27 1.27

Bottom View

5.08

Bottom View

Recommended layout Pattern (Unitmm)

贴片金属表面振荡器

SMD Metal Surface Oscillator

Top View Suggested Layout

'扬兴晶振]

YXC 000

918222

YSO140TC

Features

• AEC-Q200 -Frequency range: 1MHz ~54MHz.

Electrical Specifications 1 Item / Type	JIY
Output Frequency Range	1~54
Output Type	СМ
Supply Voltage	1.8V
Oscillation Mode	Fund
Total Tolerance	±501
Output Load	15 p
Operating Temperature Range	-40~
Storage Temperature Range	-55~
Voltage Vol (Max.) / Vo 1 (Min.)	90%
Symmetry	45-5
Rise(Tr) Time Fall(Ti) Time	5ns/
Start-up Time	3 ms
Output Current	See
Frequency Aging (at 25 °C)	± 3 j

Dimensions

PAD	#1	#2	#3	#4
FUNCTION	Tri-state	GND	OUTPUT	VDD

Notes

1. To maintain stable operation provide a 0.01 uF to 0.1 uF by-pass capacitor at a location as near as possible to the power source terminal of the crystal product (between Vcc-GND)

Package Size - Dimensions(Unit:mm)

1.6x1.2x0.60mm

-Package Size: 1.6*1.2 2.0*1.6 2.5*2.0 3.2*2.5 5.0*3.2 7.0*5.0mm

■Ultra Small SMD seam sealed clock crystal oscillator units. ■Applications: TPMS GPS Vehicle backup camera and Voice-Control

YSO140TC

54MHz or specify
IOS
$V \sim 3.3V$
ndamental
0ppm _f ±100ppm, or specify
pF, or specify
~+85°Cf -40~+125°C, or specify
~+125 °C
%Vdd min./10%Vdd max
55%
/5ns Max.
ns Max.
Below
ppm / year Max.

Recommended layout Pattern (Unitmm)

Package Size - Dimensions(Unit:mm)

-PT(

3.2x2.5x1.00mm

m

5.0x3.2x1.20mm

5.08

Bottom View

Recommended layout Pattern (Unit:mm)

TOP View Suggested Layout

1.4 1.14 1.4

Ť

「扬兴晶振]

YSO1212SR

Features

-External dimensions: 12.7 x 12.7 x 5.4 mm. -Frequency range: 1MHz -100MHz. -All metal welded package. -Builtin CMOS IC with tristate function.

Applications

HDD,Work station.

Electrical Specifications		
Item / Type	J	[YS
Output Type		СМО
Supply Voltage		3.3V
Oscillation Mode		Fund
Frequency Tolerance		± 20
Output Load		15 p
Operating Temperature Range		-20 ~
Storage Temperature Range		-40-
Voltage Vol (Max.)/Vo I (Min.)		90%
Symmetry		40 ~
Rise (Tr)/Fall(Tf) Time		10ns
Start-up Time		10m
Supply Current		30 m
Frequency Aging (at 25 °C)		± 3

Dimension S

直插金属表面振荡器 DIP Metal Surface Oscillator

-Monitor, computers, wireless Ian card & wire, CDplayer,

SO1212SR IOS V/5V, or specify ndamental 20ppm, ±25ppm, or specify pF, or specify $\sim +70$ °C , -40 $\sim +85$ °C, or specify $-+85 \ ^{\circ}C_{r}-55 \ \sim+125 \ ^{\circ}C$ %Vdd min./10%Vdd max ~ 60 % Standard ns Max. ms Max. mA Max. «50MHz) 3 ppm/year Max.

引脚功能定义		
引脚	功能	定义
1	E/D	三态/无三态
4	GND	接地
5	OUTPUT	输出
8	Vdd	电源电压

YSO1512SR

直插金属表面振荡器 DIP Metal Surface Oscillator

Features

• External dimensions: 20.4x 12.8x 5.3 mm. -Frequency range: $1MHz \sim 100MHz$. • All metal welded package.

• Builtin CMOS IC with tristate function.

Applications

• Monitor, computers, wireless Ian card & wire, CDplayer, HDD, Work station.

Electrical Specifications Item / Type I	I YSO1512SR
Output Frequency Range	1 ~ 100 MHz
Output Type	CMOS
Supply Voltage	3.3V/5V, or specify
Oscillation Mode	Fundamental
Frequency Tolerance	± 20ppm, ±25ppm _f or specify
Output Load	15 pF, or specify
Operating Temperature Range	-20 ~ + 70 °C , - 40 ~ + 85 *0, or specify
Storage Temperature Range	-40- + 85 °C,- 55 ~ +125 °C
Voltage Vol (Max.)/Vol (Min.) Symmetry	90%Vdd min./10%Vdd max 40 ~ 60 % Standard
Rise (Tr)/ Fall (Tf) Time	10 ns Max.
Start-up Time	10ms Max.
Supply Current	30 mA Max. «50MHz)

Dimensions

引脚功能定义						
引脚	功能	定义				
1	E/D	三态/无三态				
7	GND	接地				
8	OUTPUT	输出				
14	Vdd	电源电压				

Ť

「扬兴晶振]

Frequency Aging (at 25 °C)	± 3 pr
Electrical Specifications	

All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise stated. Typical values are at 25°C and nominal supply

uge.					
Parameter	1.8V	2.5 V	3.3 V		
Frequency Range	1MHz~108MHz	1MHz~108MHz	1MHz~108MHz		
SupplyVoltage Variation(Vdd)10%	1.62V-1.98V	2.25 V-2.75 V	2.97 V-3.63 V		
Standby Current		15p A			
Frequency Tolerance		\pm 20ppm, \pm 25ppm, \pm 50ppm, or specify			
Output Load	15 pF, or specify				
Operating Temperature Range	$-40 \sim +85$ °C, or specify				
Storage Temperature Range	-55~ + 125°C				
Voltage Vol (Max.)/Vo I (Min.)	VOH=90%Vdd / VOL=10%Vdd				
Duty Cycle	45- 55%				
Start-up Time	10ms Max.				
Supply Current		See Below			
Frequency Aging (at 25°C)	± 3 ppm / year Max.				

Pin Description

Pin	Symbol		Functionality
		Output Enable	Pin 1=H: Specified frequency output Pin 1=L: Pin 3 output is low. Specified freque
1	OE/ST/NC	Standby	Pin 1=H: Specified frequency output Pin 1=L: Pin 3 output is low. Device goes to sle to 15 p A(Standby Current).
		No Connect	Pin 1=VDD or Pin 1 is Open. Specified freque
2	GND	Power	Electrical ground
3	OUT	Output	Oscillator output
4	VDD	Power	Power supply voltage

Units: mm

YSO680PR

贴片金属表面可编程振荡器 SMD Metal Surface Programmable Oscillator

• Quartz Crystal Programmable Oscillator • Any frequency between 1 MHz~108MHz accurate to 6 decimal places • Operating temperature from -40⁶C to +85^oC -CMOS compatible output • Industry-standard packages: 2.5 x 2.0,3.2 x 2.5,5.0 x 3.2,7.0 x 5.0 mm x mm

-Ideal for e-Books, clock for MPU, Consumer electronics, etc

ppm/year Max.

_, , =

YSO680PR

贴片金属表面可编程振荡器 SMD Metal Surface Programmable Oscillator

Recommended Land Pattern (Unit: mm)

Package Size - Dimensions (Unit: mm)

3.2 x 2.5 mm

3.2±0.1

YXC

XX

5.0 x 3.2 mm

-Side View

Notes

1. A capacitor of value 0.01 uF-0.1 uFor higher between Vdd and GND is required.

TOP View Suggested Layout

Features

「扬兴晶振]

Quartz Crystal Programmable Oscillator

• CMOS compatible output

mm Applications:

Electrical Specifications

All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise stated. Typical values are at 25°C and nominal supply voltage.

Parameter	1.8V	2.5 V	3.3 V			
Frequency Range	1MHz~125MHz	1MHz~200MHz	1MHz~200MHz			
SupplyVoltage Variation(Vdd)10%	1.62V-1.98V	2.25 V-2.75 V	2.97 V-3.63 V			
Standby Current		400 nA				
Frequency Tolerance		\pm 20ppm, \pm 25ppm, \pm 50ppm, or specify	,			
Output Load	15pF, or specify					
Operating Temperature Range	$-40 \sim +85$ °C, or specify					
Storage Temperature Range	-55 ~+150 °C					
Voltage Vol (Max.) / Vol (Min.)	VOH = 90%Vdd/VOL = 10%Vdd					
Duty Cycle		45~ 55%				
Period Jitter(@12K-20Mhz)	1.8V=1.5ps 2.5V=1.1ps 3.3V=1ps					
Start-up Time	7 ms Max.					
Supply Current		See Below				
Frequency Aging (at 25 *C)		\pm 3 ppm/year Max.				

Pin Description

Pin	Symbol		Functionality
		Output Enable	H : specified frequency output L : output is low. Specified frequency output
1	OE/ST/NC	Standby	H : specified frequency output L : output is low. Device goes to sleep mode. 400uA(Standby Current).
		No Connect	Pin 1 = VDD or Pin 1 is Open : Specified free function
2	GND	Power	Electrical ground
3	OUT	Output	Oscillator output
4	VDD	Power	Power supply voltage

★ INPUT CURRENT 工作电流

Supply			Power Dissipaton		
Voltage	1.000-30.000	30.000 ~ 75.000	75.000-110.000	133.000-166.000	166.000-200.000
1.8V	18 mA max	19 mA max	20 mA max	20 mA max	20 mA max
2.5 V	21 mA max	22mA max	23 mA max	24mA max	25mA max
3.3 V	23 mA max	24 mA max	25 mA max	26 mA max	27 mA max

贴片金属表面可编程振荡器 SMD Metal Surface Programmable Oscillator

• Any frequency between 1 MHz~200MHz accurate to 6 decimal places • Operating temperature from -40°Cto+85°C ■ Period Jitter, Typical: 1pSec at 12KHz to 20MHz -Industry-standard packages: 2.0x1.6 , 2.5 x 2.0, 3.2 x 2.5, 5.0 x 3.2, 7.0 x 5.0 mm x

.Ideal for DSC, DVC, DVR, IP CAM, Tablets, e-Books, SSD, GPON, EPON, etc -Ideal for high-speed serial protocols such as : USB, SATA, SAS,

「扬兴晶振」 **YSO690PR**

0.64

0.95

Package Size - Dimensions (Unit: mm)

$H \square H$ Side View

Ν

Notes:

1. A capacitor of value 0.01 pF~0.1pFor higher between Vdd and GND is required.

贴片金属表面可编程振荡器 SMD Metal Surface Programmable Oscillator

Recommended Land Pattern (Unit: mm)

TOP View Suggested Layout

R.	 0.8	- 1.4 -
		f====
4		į.

TOP View Suggested Layout

Ĩ	1.4	1.14	1.4	•	
-					12
		-			1.0
	,		 		12

Ť

「扬兴晶振]

YSO210PR

Features

-Frequency range: 10MHz ~ 1 500MHz. -Output LVPECLorLVDS . •High stability, lowjitter, low power consumption.

Electrical Specifications

Item / Type	LVPECL		. LVDS	I Re	marks
Output Frequency Range	10MH	10MHZ ~ 1500MHZ			
Supply Voltage	$2.5 \mathrm{Vdc} \pm 10\%$	$2.5 V dc \pm 10\%$ $3.3 V dc \pm 10\%$			
Operating Temperature Range		0∼ +85 [#] 0	3		
Storage Temperature Range	-5	5- +125°	С		
Total Stability		± 50ppm			
Input Resistance	IN	lohms Ty	'n		
Current consumption	80mA Max		50mA Max	OE=Vcc, LVPECL=(50)	Q or LVDS=(100)Q
Disable Current	1	16mA Typ		OE=GND	
Output Voltage (LVPECL)	VOH=Vcc-1.03 Min	in —		DC characteristics	
Output Voltage (LVFECE)	VOL=Vcc-1.6 Max	.6 Max -			
	—	VOD=175mVMin. dVOD=50mV Max.		VOD1.VOD2	
Output Voltage (LVDS)	—			dVOD= VOD1-VOD2	DC characteristics
output voluige (Eves)			OS=1.25VTyp.	VOS1, VOS2	
		dVOS=50mV Max.		dVOS= I VOS1-VOS2	
Output Load Condition	L PECL=50Q		_	Terminated t	o Vcc-2.0V
Output Load Condition	—		L LVDS=100Q	Connected betw	een OUT to OUT
lutput Voltage	VIH=70% Vccl	Min, VIL:	=30%Vcc Max	OE terminal	
Output Symmetry		45-55%			
Rise Time/FallTime		lnS Max		LVPECL: Between 20% (VOH-VOL), LVDS:Bet Differential Output peak	ween 20% and 80%
Start-up time		10mS		Time at minimum supply	voltage to be 0 s
•	1	.0pS Typ			-800MHZ
Phase Jitter (12KHZ-20MHZ)		.0pS Typ			-1500MHZ
Aging		±3ppm		25°C,First year, V	cc=2.5V,33V

Dimensions

PAD	#1	#2	#3	#4	#5	#6
FUNCTION	OE	NC	GND	OUT+	OUT-	VD

1. To maintain stable operation provide a 0.01 uF to 0.1uF by-pass capacitor at *a* location as near as possible to the power source terminal of the crystal product] between Vcc-GND)

贴片金属表面可编程振荡器 SMD Metal Surface Programmable Oscillator

-External dimensions: 3 .2x2.5x 1.2mm 5.0x3.2x1.3mm 7.0x5.0x1.6mm. -Quartz Crystal Programmable Differential Oscillator.

•High precision characteristic covering up to wide frequency range.

-Applications: 10 GB Ethernet, SONET, SATA, SAS, Fibre Channel

#6 VDD

Figure 1. Pin Assignments

YSO210PR

Package Size - Dimensions(Umt:mm)

3.2x2.5x1.20mm

Side Viw

贴片金属表面可编程振荡器

Recommended layout Pattern (Umt:mm)

SMD Metal Surface Programmable Oscillator

5.0x3.2x1.30mm

7.0x5.0x1.60mm

Side View

扬兴晶振」

1XC 0.000 T

018EBA

YSV220PR

Features

-Frequency range: 10MHz -1 500MHz. -Output LVPECLor LVDS . ■ High stability; low jitter; low power consumption.

Item/Type SMDVCXO		Ľ		
Output Frequency Range	10M	IHZ ~ 150		
Supply Voltage	2.5Vdc± 109	/o		
Operating Temperature Range		-40~+85		
Storage Temperature Range		-55~ +125		
Total Stability		±50ppn		
Absolute Pull Range		±50ppmN		
Input Resistance		IMohms 7		
Current	80mA Max			
Disable Current		16mA T		
Output Voltage (LVPECL)	VOH=Vcc-1.03 Min			
Suput Foruge (2+1202)	VOL=Vcc-1.6 Ma	x		
Output Voltage (LVDS)				
	_			
Output Load Condition	L PECL=50Q			
	_			
lutput Voltage	VIH=70% V	cMin, VI		
Output Symmetry		45-55%		
Rise Time/FallTime		1nS Ma		
Start-up time		10mS		
Phase Jitter (12KHZ-20MHZ)		1.0pS		
Aging		2.0pS ±3ppm		
/ 15mg		±2bbm		

Dimension

S

PAD	#1	#2	#3	#4	#5	#
FUNCTION	Vcon	OE	GND	OUT+	OUT-	VI

1. To maintain stable operation provide a 0.01 uF to 0.1uF by-pass capacitor at a location as near as possible to the power source terminal of the crystal product(between Vcc-GND)

贴片金属表面可编程振荡器 SMD Metal Surface Programmable Oscillator

-External dimensions: 3 .2x 2.5x 1.2mm 5.0x3.2x1.3mm 7.0x5.0x1.6mm.

-Quartz Crystal Programmable Voltage Controlled Differential Oscillator. ,High precision characteristic covering up to wide frequency range.

-Applications: 10 GB Ethernet, SONET, SATA, SAS, Fibre Channel

Figure 1. Pin Assignments

■扬兴晶振】 **YSV220PR**

Package Size - Dimensions(Unit:mm)

3.2x2.5x1.20mm

1.20

贴片金属表面可编程振荡器

Recommended layout Pattern (Unit:mm)

SMD Metal Surface Programmable Oscillator

5.0x3.2x1.30mm

Side View

M

Top View Suggested Layout

7.0x5.0x1.60mm

'扬兴晶振]

0.000 T

18EBA

1XC

YSV310PR

Features

-Frequency range: 10MHz -250MHz. Output CMOS .

Item/Type SMD VCXO	¹ I	CMOS	J			
Output Frequency Range		10MHZ ~ 250MHZ				
Supply Voltage		$2.5Vdc + 10\%$ $3.3Vdc \pm 10\%$				
Operating Temperature Range		-40~ +85°C				
Storage Temperature Range		-55 - +125°C				
Total Stability		±50ppm				
Absolute Pull Range		±50ppmMin				
Input Resistance		IMohms Typ				
Current		40mA Max				
Output Load condition CMOS		15PF				
Output Voltage		VOH=90%Vcc Min				
1 0		VOL=10%Vcc Max				
Input Voltage		VIH=70% Vcc Min, VIL=30%Vcc Max				
Symmetry		45-55%				
Rise Time/FallTime		4nS Max				
Start-up time		10mS Max				
Phase Jitter (12KHZ-20MHZ)		1.0pS Typ.				
Aging (25X,First year, Vcc=2.5V,3.3V)		±3ppm				

Dimensions

PAD	#1	#2	#3	#4	#5	#
FUNCTION	Vcon	NC	GND	OUT	NC	VI

Notes: 1. To maintain stable operation provide a 0.01uF to 0.1uF by-pass capacitor at a location as near as possible to the power source terminal of the crystal product(between Vcc-GND)

贴片金属表面可编程振荡器 SMD Metal Surface Programmable Oscillator

-External dimensions: 3 .2x2 .5x 1.2mm 5.0x3.2x1.3mm 7.0x5.0x1.6mm.

■Quartz Crystal Programmable Voltage Controlled Oscillator. -High precision characteristic covering up to wide frequency range. -High stability; low jitter, low power consumption.

-Applications: 10 GB Ethernet, SONET, SATA, SAS, Fibre Channel

#6 VDD

Figure 1. Pin Assignments

「扬兴晶振」 **YSV310PR**

____Package, Size - Dimensions(Unit:mm)

贴片金属表面可编程振荡器

Recommended layout Pattern (Unit:mm)

3.2x2.5x1.20mm

SMD Metal Surface Programmable Oscillator

5.0x3.2x1.30m

Top View Suggested Layout

MEMS 可编程振荡器 **MEMS Programmable Oscillator**

7.0x5.0x1.60mm

MEMS Resonators

- 1.1 Manufacturing MEMS
- 1.2 Integration 2 MEMS Oscillation
- 2.1 Architecture
- 2.2 Stability Performance
- 2.3 Phase Noise Performance
- 2.4 Quality/Reliability
- 2.5 Packaging

(1) MEMS Resonators

Revolutionary TempFlat[™] MEMS Resonators All-silicon MEMS resonators are at the core of MEMS-based silicon oscillator and clock generator products. These extremely stable and ultra-robust resonators, based on TempFlat MEMS technology, are manufactured using standard CMOS process equipment in semiconductor fabs, using silicon on insulator (SOI) wafers. The resonators are vacuum-sealed in silicon and can be packaged in cost-effective plastic packages. There are both kHz and MHz frequency resonators. With sub-uA power consumption, kHz frequency resonators are typically used for time-keeping applications (e.g. real time a complete, highly-accurate embedded clocking solution clocks) and power management (e.g. sleep, wake-up functions)(Fig.1). MHz resonators are used as references in various serial and parallel protocols where data transfer

speed is critical(Fig.2).

54

TempFlat MEMS Technology

Until recently, all MEMS-based oscillators used complex compensation circuitry to stabilize the output

(Fig.2) KHz Resonator (Fig.1) MHz Resonator frequency over temperature. TempFlat MEMS resonator

YXC MEMS 可编程振荡器介绍 Introduction to MEMS YXC Programmable Oscillator

technology is a revolutionary breakthrough that reduces the need for temperature compensation. 32 kHz families are the first generation of devices to employ TempFlat MEMS technology. Uncompensated TempFlat MEMS -based 32 kHz timing devices have frequency stability that is two times better than 32 kHz quartz crystals. Plus, TempFlat MEMS-based 32 KHz solutions consume much less power and board space compared to quartz-based timing devices.

Integrated Timing Functionality

MEMS resonators are the first and only solutions that enable complete integration of timing within a semiconductor package. Because resonators are manufactured using the MEMS First process, they can be cost-effectively embedded with another SOC die inside a plastic package. This unique capability offers the benefits of increased system performance and reliability, simplified system design, and reduced technical support. SOC vendors who use MEMS resonators can now provide without the need for any external timing components.

1.1 Manufacturing MEMS

Manufacturing TempFlatTM MEMS Resonators

MEMS resonators uses a process called MEMS First TM. This process produces very small silicon resonator die that are fully vacuum-sealed in silicon, extremely stable and highly durable. Because this process uses state-of-the-art CMOS foundry tools and materials, MEMS are highly manufacturable with excellent yields, quality and reliability.

(Fig.3)Chip Surface with Conductive Paths and Bond Pads 扬兴愿景: 与员工客户共成长, 共国中华电子梦!

Features	Benefits
- TempFlat MEMS resonators use	, 100% predictable from lot to lot ,
single-crystal silicon	Simpler temperature compensation scheme,
	better stability, lower power and lower
	cost
- High temperature in-process	- Annealing results in higher long term
encapsulation to protect MEMS	reliability and zero drift
structure	
Standard materials and processes	Leverage existing supply chain for
	lower cost
- Industry standard process-control	, 90%+ yields, <1 DPPM quality, zero MEMS
and six sigma philosophy	failures to date

(Fig.4)MEMS FirstTM Features and Benefits The MEMS First Process

Prior to the development of the MEMS First process, packaging was the key barrier to commercializing MEMS resonators. This barrier was overcome through this process by successfully encapsulating resonators within individual micro -vacuum chambers on silicon wafers.

The resonator structure is first etched in a silicon on insulator (SOI) layer using a deep reactive ion etching (DRIE) process. After the resonators are etched, the wafer surfaces are planarized by filling the trenches with oxide. The oxide is patterned to form contact holes that allow electrical connection to the resonator. Thin silicon layers are grown on top of the oxide and vents are patterned to allow removal of the oxide that surrounds the resonator beams. Oxide is removed with hydrofluoric acid vapor to create freestanding resonator beams, allowing the resonators to vibrate.

Final encapsulation using Epi-Seal[™] process, an exceptionally clean epitaxial sealing method, is essential to forming stable resonators. This process is the only demonstrated fabrication process that produces MEMS resonators with stability. Within high-temperature epitaxial reactors, the resonators and vacuum cavities are cleaned with hydrogen and chlorine gas. The resonators are sealed with a durable poly silicon cap that protects the resonator die and enable them to withstand very high pressure.

Electrical vias are formed to the resonators and electrodes by etching and filling trenches. Electrical interconnects are made with aluminum traces and bond pads. The process is completed with final deposition of silicon oxide and nitride scratch masks steps. The resulting wafers can be back-grounded to less than 100m thick and packaged with industry standard IC packaging

YXC MEMS 可编程振荡器介绍 Introduction to MEMS YXC Programmable Oscillator processes such as plastic molding, flip chip and chip stack.

1.2 Integration

Silicon MEMS resonators are available in die form and can be cost-effectively embedded with other die inside a standard plastic semiconductor package(Fig.5). Integrating a MEMS resonator offers numerous benefits. By completely eliminating external timing circuits, systems designers will experience enhanced performance, reduced board space, reduced support costs and faster time to revenue.

*Integration enables a high precision clock (± 5 PPM or ±25 PPM)

*Eliminates all external clocks to simplify system design and reduce board space

*Simplifies technical support. Reduces customer issues related to bad layout practices, incorrect decoupling/filtering, and selection of un-matched / inappropriate crystal resonator/ oscillator

'Compatible with any standard packaging technology

*Enables a standard supply chain: scalable, shorter lead times, reduced BOM

55

(Fig.5) BGA Package

(2) MEMS Oscillation

Silicon MEMS-based oscillators are manufactured completely in Silicon. The timing devices comprise a MEMS resonator die mounted to a programmable analog oscillator die encapsulated within a cost-effective, standard plastic package.

2.1 Architecture

A MEMS oscillator combines a MEMS resonator die with a programmable oscillator IC. Both die are mounted together through a stacked-die or flip-chip process and co-packaged in industry-standard plastic packages or chip-scale packaging.

(Fig.6) MEMS Oscillator Architecture with TempFlat Technology

A MEMS resonator is connected to the MEMS -specific circuit blocks on the analog oscillator IC and is driven through electrostatic excitation (Fig.6). A MEMS bias generator is used to bias the electrostatic transducers that are built in the MEMS die. The resonator sustaining circuit brings the resonator into mechanical oscillation.

The output frequency is configured through use of a Fractional-N phase locked loop (PLL)

YXC MEMS 可编程振荡器介绍 Introduction to MEMS YXC Programmable Oscillator

located on the analog oscillator die. In most families, the output drivers enable configurable drive strength for best matching of transmission line impedances and to reduce system EMI. On -chip one time programmable (OTP) memory is used to store the configuration parameters.

TempFlat[™] MEMS technology, first deployed in the SiT15xx 32 kHz families, reduces the need for temperature compensation. This simplifies the design of the analog oscillator IC, reduces system size and lowers power consumption. In some MEMS oscillator families, the functional blocks associated with temperature compensated can be eliminated (Fig.7). For precision timing applications, ultra-performance XOs and differential XOs employ a temperature sensor and a temperature to digital converter which work with the Frac-N PLL to perform temperature compensation.

(Fig.7)MEMS Oscillator Architecture with Temperature Compensation

2.2 Stability Performance

MEMS Oscillator Frequency Stability

The frequency output of all oscillators varies over temperature. This variation is a crucial performance specification that is expressed as frequency stability and measured in parts per million (PPM). This stability rating is inclusive of variation over temperature, voltage, process and soldering.

32 kHz Frequency Stability

In terms of frequency stability, revolutionary The frequency variation of standard AT cut quartz TempFlat[™] MEMS 32 kHz oscillators are two times crystal oscillators is shown below(Fig.10), along with the more accurate than quartz XTALs. The measured stability of typical MEMS oscillators. Since frequency variation of MEMS-based 32 kHz oscillators revolutionary MEMS oscillators have built-in is plotted in blue lines as shown below. The red lines temperature compensation, these devices exhibit very represent the frequency variation range of 32 kHz crystal flat frequency stability over the entire industrial resonators (XTALs). At room temperature (25° C), 32 temperature range, with adequate margin at the low and kHz devices are trimmed to< 10 PPM, while quartz high temperatures to meet the specifications of high XTALs demonstrate 20 PPM variation. Over the entire performance applications. industrial temperature range, the devices exhibit < 75 to 100 PPM stability compared to typical quartz XTALs with -160 to -200 PPM.

With temperature compensation added, 32 kHz TCXOs exhibit frequency stability well within their ± 5 PPM specification over temperature as shown below(Fig.9). The devices has achieved TCXO-level stability in a timing solution that consumes up to 50% less power and is up to 80% smaller than quartz-based solutions.

YXC MEMS 可编程振荡器介绍 Introduction to MEMS YXC Programmable Oscillator

MHz Oscillator Frequency Stability

(Fig. 10) The frequency variation MEMS vs Quartz 25 PPM XOs, as shown in the plot below

(Fig.11), have better frequency stability characteristics compared to quartz 25 PPM

X0s.

(Fig.11) MEMS vs Quartz

2.3 Phase Noise Performance

Low Phase Noise and Jitter of MEMS Oscillators Phase noise is a key specification that is very important to the performance and operation of the system. Wireless and GPS applications

have stringent requirements for close-in phase noise (< 10 kHz offset) while serial communications applications such as SONET, Gigabit and 10 Gigabit Ethernet, SATA, SAS, FibreChannel, PCI-Express, USB have specifications for RMS phase jitter (integrated over 12 kHz to 20 MHz offsets of the carrier frequency).

The phase noise and phase jitter of MEMS oscillators has seen dramatic improvement over the past 3 years. Newer devices, such as the Encore platform based single-ended and differential products (SiT820x and SiT912x) offer typical RMS phase jitter of 500 femto-seconds, and a maximum of 1 ps, integrated from 12 kHz to 20 MHz. No other MEMS oscillator offers such performance.

(Fig.11) below shows an example of a phase noise plot for a 100 MHz MEMS oscillator (12 kHz to 20 MHz) with 478 femtoseconds of integrated RMS phase noise.

(Fig. 12) Phase noise plot

2.4 Quality/Reliability

Highest Reliability, Robustness and Resilience

MEMS oscillators have superior reliability (operating life), robustness (ability to withstand shock and vibration) and resilience. MEMS resonators are made of silicon and manufactured in ultra-clean semiconductor foundries using proven design rules to ensure high yield and semiconductor-level quality. The qualification and lifetime testing results lead to a mean time between failure (MTBF) of more than 1000 million hours (FIT<1). Silicon MEMS devices demonstrate shock and vibration resistance of 50,000 g and 70 g respectively.

YXC MEMS 可编程振荡器介绍 Introduction to MEMS YXC Programmable Oscillator

	MEMS Oscillators
Reliability/MTBF	1000 million hours
Shock Resistance	50,000 g shock
Vibration Resistance	70 g vibration
	The result of the test

2.5 Packaging

Drop-in Replacements for Quartz

A variety of industry-standard packages enable 100% drop-in replacement of quartz devices. Because these devices are pin compatible and fit onto common quartz oscillator PCB pad layouts, board design changes are not required to upgrade from quartz to MEMS devices.

Smallest Oscillator Package

To support space requirements of ultra-small applications, P Power oscillators are available in tiny 1.5 x 0.8 x 0.6H mm CSP (chip-scale packages). These P Power devices are the world's smallest oscillators and the first available in CSP.

Lower-profile Packages

MEMS resonators are thinner than any packaged quartz crystal. Standard packages are 0.75 to 0.90 mm thick, depending on the footprint size.

Plastic Packaging

MEMS resonators and the companion oscillator ICs are molded into plastic packages. The low cost plastic injection molded packages is for higher reliability, lower lead inductance and improved thermal performance.

The industry-standard plastic packages are widely used throughout the electronics industry and are available from numerous suppliers.

Standard Semiconductor Packaging Processes MEMS-based tinning devices follow a standard semiconductor packaging flow.Slicon MEMS resonators are vacuum sealed using an advanced Epi-SealTM process, which eliminates foreign particles, improves reliability, and enables use of modern packaging technologies.

The packaging flow(Fig.14) represents the process used for MHz oscillators packaged in quad flat no-lead (QFN) packages. After dicing, MEMS and CMOS chips are mounted, typically in a stacked die arrangement, on lead frame strips or substrates either by flip chip or standard die attach. They are wire bonded with thin gold or copper wires. The populated lead frames or substrates are then transfer molded. The molded devices are singulated and tested on standard handling and automated test equipment.

Mold plastic and singulate 6. Test and calibrate (Fig.14) MHz oscillators packaging

The flow(Fig.15) shows the process for packaging ultra-small p Power oscillators in wafer-level chip scale packages (WLCSP). The MEMS and CMOS wafers are bumped at wafer-scale in a standard chip scale assembly line. The MEMS die are diced and flip-chipped to the CMOS wafer and then epoxy under-fill is applied to the flip-chip interface. The two-die WLCSP wafer is then tested at wafer scale using standard automated test

2. Mount CMOS chip

equipment and put into tape and reel after singulation.

(Fig. 15) ultra-small P Power oscillators packaging

YXC MEMS 可编程振荡器介绍 Introduction to MEMS YXC Programmable Oscillator

1. CMOS wafer bumping

3. Under-fill application

5. Singulation

2. Mount MEMS resonator

4. Wafer-scale testing

低功耗可编程振荡器 卩 Power Oscillators

Features:

- Low Power Programmable Oscillator
- $\blacksquare \mbox{Any frequency between 1 MHz and 110 MHz accurate to 6 decimal places}$
- 100% pin-to-pin drop-in replacement to quartz-based XO
- Operating temperature from -40° C to 85° C.
- Low power consumption of 3.5 mA typical at 1.8V
- Standby mode for longer battery life, fast startup time of 5 ms
- LVCMOS/HCMOS compatible output
- Industry-standard packages: 2.0 x 1.6, 2.5 x 2.0, 3.2 x 2.5, 5.0 x 3.2, 7.0 x 5.0 mm x mm

Applications:

- Ideal for DSC, DVC, DVR, IP CAM, Tablets, e-Books, SSD, GPON, EPON, etc ■ Ideal for high-speed serial protocols such as: USB, SATA, SAS, Firewire,
- 100M/1G/10G Ethernet, etc.

Electrical Specifications

Table 1. Electrical Characteristics

All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise stated. äypiaal25ål€eand nominal supply

voltage.	
	Parameters

voltage. Parameters						Condition
			Fi	requency Rai	nge	
Output Frequency Range		1	-	110	MHz	
			Freque	ncy Stability	and Aging	
Frequency Stability	F_stab	-20		+20	ppm	Inclusive of initial tolerance at 25°C, 1 st year aging at 25°C, and
		-25	-	+25	PPm	variations over operating temperature, rated power supply voltage and load.
		-50		+50	PPm	
	I		Operat	ing Tempera	ture Range	
Operating Temperature Range	T_use	-20		+70	°C	Extended Commercial
		-40		+85	°C	Industrial
	1		Supply Volta	age and Curr	ent Consum	ption
Supply Voltage	Vdd	1.62	1.8	1.98	V	-
		2.25	2.5	2.75	V	1
		2.52	2.8	3.08	V	
		2.7	3.0	3.3	V	-
		2.97	3.3	3.63	V	-
		2.25		3.63	V	-
Current Consumption	Idd		3.8	4.5	mA	No load condition, $f = 20$ MHz, Vdd = 2.8V to 3.3V
			3.7	4.2	mA	No load condition, $f = 20$ MHz, Vdd = 2.5V
			3.5	4.1	mA	No load condition, $f = 20$ MHz, Vdd = 1.8V
OE Disable Current	l_OD			4.2	mA	Vdd = 2.5V to 3.3V, OE = GND, Output in high-Z state
				4.0	mA	Vdd = 1.8V, OE = GND, Output in high-Z state
Standby Current	l_stri		2.1	4.3	мА	ST = GND, Vdd = 2.8V to 3.3V, Output is weakly pulled down
			1.1	2.5	мА	ST = GND, Vdd = 2.5V, Output is weakly pulled down
			0.2	1.3	мА	ST = GND, Vdd = 1.8V, Output is weakly pulled down
	.		LVCMC	OS Output Cl	haracteristic	'S
Duty Cycle	DC	45		55	%	All Vdds. See Duty Cycle definition in Figure 3 and Footnote 8
Rise/Fall Time	Tr,Tf		1	2	ns	Vdd = 2.5V, 2.8V, 3.0V or 3.3V, 20% - 80%
			1.3	2.5	ns	Vdd =1.8^ 20%-80%
			_	2	ns	Vdd = 2.25V - 3.63V, 20% - 80%
Output High Voltage	VOH	90%	_	_	Vdd	IOH = -4 mA (Vdd = 3.0V or 3.3V) IOH = -3 mA (Vdd = 2.8V and Vdd = 2.5V) IOH =-2 mA (Vdd = 1.8V)
Output Low Voltage	VOL	_	_	10%	Vdd	IOL = 4 mA (Vdd = 3.0V or 3.3V) IOL = 3 mA (Vdd = 2.8V and Vdd = 2.5V) IOL = 2 mA (Vdd = 1.8V)

Table 1. Electrical Characteristics (continued)

Parameters

				Input Chara	cteri
Input High Voltage	VIH	70%	-	-	
Input Low Voltage	VIL	_	_	30%	
Input Pull-up Impedance	Z_in	50	87	150	
		2	-	-	
	·		Startı	ip and Resur	ne T
Startup Time	T_start	_	-	5	
Enable/Disable Time	T_oe	_	_	130	
Resume Time	T_resume	—	-	5	
	·			Jitter	
RMS Period Jitter	TJitt		1.8	3	
			1.8	3	
Peak-to-peak Period Jitter	T_pk		12	25	
			14	30	
RMS Phase Jitter (random)	T_phj		0.5	0.9	
			1.3	2	

Table 2. Pin Description

		Symbol		Functionality
			Output Enable	H (1] : specified frequency output L: output is high impedance. Only output drive
	1	1 OE/ST/NC		H (1): specified frequency output L: output is low (weak pull down). Device goe: current reduces to l_std.
			No Connect	Any voltage between 0 and Vdd or Open" 1 : 5 Pin 1 has no function.
	2	GND	Power	Electrical ground
	3	OUT	Output	Oscillator output
	4	VDD	Power	Power supply voltage?
1				

Notes:

1. In OE or ST mode, a pull-up resistor of 10 kQ or less is recommended if pin 1 is not externally driven. If pin 1 needs to be left floating, use the NC option.

2. A capacitor of value 0.1 pF or higher between Vdd and GND is required.

Dimensions and Patterns

Package Size - Dimensions (Unit: mm)^

2.0 x 1.6x0.75 mm

0,75±0,05

低功耗可编程振荡器 卩 Power Oscillators

Condition
Pin tOEorST
Pin 1,OE or ST
Pin 1, OE logic high or logic low, or ST logic high
Pin 1, ST logic low
Measured from the time Vdd reaches its rated minimum value
$f = 110$ MHz. For other frequencies, $T_oe = 100$ ns + 3 * cycles
Measured from the time ST pin crosses 50% threshold
f = 75 MHz, Vdd = 2.5V, 2.8V, 3.0V or 3.3V
f = 75 MHz, Vdd = 1.8V
f = 75 MHz, Vdd = 2.5V, 2.8V, 3.0V or 3.3V
f = 75 MHz, Vdd = 1.8V
f = 75 MHz, Integration bandwidth = 900 kHz to 7.5 MHz
f = 75 MHz, Integration bandwidth = 12 kHz to 20 MHz

led Land Pattern (Unit: mm)

Dimensions and Patterns

Notes:

3. Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of 🍸 will depend on the assembly location of the device. 4. A capacitor of value 0.1 pF or higher between Vdd and GND is required.

YX 「扬兴晶振]

低功耗可编程振荡器 卩

Power Oscillators

YS08009MR

Features:

- systems

Electrical Specifications

Table 1. Electrical Characteristics

All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise stated. Typical values are at 25° C and nominal supply voltage.

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition
				Frequency Ra		
Output Frequency Range	f	115		137	MHz	
			Freque	ency Stability	and Aging	
Frequency Stability	F_stab	-20		+20	PPm	Inclusive of Initial tolerance at 25°C, 1 st year aging at 25°C, and
		-25		+25	PPm	variations over operating temperature, rated power supply voltage and load.
		-50	_	+50	PPm	
			Opera	ting Temperat		
Operating Temperature Range	T_use	-20	—	+70	°C	Extended Commercial
		-40	—	+85	°C	Industrial
				age and Curre		otion
Supply Voltage	Vdd	1.62	1.8	1.98	V	
		2.25	2.5	2.75	V	
		2.52	2.8	3.08	V	
		2.7	3.0	3.3	V	
		2.97	3.3	3.63	V	
		2.25	—	3.63	V	
Current Consumption	Idd	-	6.2	7.5	mA	No load condition, f= 125 MHz, Vdd = 2.8V, 3.0V, 3.3V or 2.25 to 3.63V
			5.5	6.4	mA	No load condition, f= 125 MHz, Vdd = 2.5V
			4.9	5.6	mA	No load condition, $f = 125$ MHz, Vdd = $1.8V$
OE Disable Current	l_OD		_	4.2	mA	Vdd = 2.5V to 3.3V, $OE = GND$, Output in high-Z state
			—	4.0	mA	Vdd = 1.8V, OE = GND, Output in high-Z state
Standby Current	l_std		2.6	4.3	pA	ST = GND, $Vdd = 2.8V$ to 3.3V, Output is weakly pulled down
			1.4	2.5	pA	ST = GND, $Vdd = 2.5V$, Output is weakly pulled down
			0.6	1.3	pA	ST = GND, Vdd = 1.8V, Output is weakly pulled down
			LVCM	OS Output Ch	aracteristics	3
Duty Cycle	DC	45	—	55	%	All Vdds
Rise/Fall Time	Tr,Tf	_	1	2	ns	Vdd = 2.5V, 2.8V, 3.0V or 3.3V, 20% - 80%
		_	1.3	2.5	ns	Vdd=1.8V,20%-80%
		—	0.8	2	ns	Vdd = 2.25V - 3.63V, 20% -80%
Output High Voltage	VOH	90%		_	Vdd	IOH = Y mA (Vdd = 3.0V or 3.3V)
Output Low Voltage	VOL		-	10%	Vdd	IOL = 4 mA (Vdd = 3.0 V or 3.3 V)

低功耗可编程振荡器 卩 Power Oscillators

■ Any frequency between 115 MHz and 137 MHz accurate to 6 decimal places ■ 100% pin-to-pin drop-in replacement to quartz-based X0 ■ Excellent total frequency stability as low as ±20 ppm ■ Operating temperature from -40° C to 85° C. \blacksquare Low power consumption of 4.9 mA typical at 1.8V ■ Standby mode for longer battery life. Fast startup time of 5 ms ■ LVCMOS/HCMOS compatible output ■ Industry-standard packages: 2.0 x 1.6, 2.5 x 2.0, 3.2 x 2.5, 5.0 x 3.2, 7.0 x 5.0 mm x mm

Applications:

 \blacksquare Ideal for GPON/GPON, network switches, routers, servers, embedded

■ Ideal for Ethernet, PCI-E, DDR, etc.

低功耗可编程振荡器 卩 Power Oscillators

Dimensions and Patterns

Table 1. Electrical Characteristics (continued)

Parameters				Condition			
			Inp	ut Characteris	stics		
Input High Voltage	VIH	70%	_	_	Vdd	Pin1,OE or ST	
Input Low Voltage	VIL	—	_	30%	Vdd	Pin 1,OE or ST	
Input Pull-up Impedance	ZJn	50	87	150	kQ	Pin 1, OE logic high or logic low, or ST logic high	
		2		_	MQ	Pin 1, ST logic low	
			Start	up and Resun	ne Timing		
Start up Time	T_start	-	-	5	ms	Measured from the time Vdd reaches its rated minimum value	
Enable/Disable Time	T_oe	-	-	122	ns	f = 137 MHz. For other frequencies, $T_oe = 100 \text{ ns} + 3^* \text{ cycles}$	
Resume Time	T_resume	-	-	5	ms	Measured from the time ST pin crosses 50% threshold	
				Jitter			
RMS Period Jitter	TJitt		1.9	3	PS	f= 125 MHz, Vdd = 2.5V, 2.8V, 3.0V or 3.3V	
			1.8	4	PS	f=125 MH ∠ Vdd = 1.8V	
Peak-to-peak Period Jitter	T_pk		12	25	PS	f= 125 MH Z Vdd = 2.5V, 2.8V, 3.0V or 3.3V	
			14	30	PS	f= 125 MH Z. Vdd = 1.8V	
RMS Phase Jitter (random)	T_phj		0.5	0.9	PS	Integration bandwidth = 900 kHz to 7.5 MHz	
			1.3	2	PS	Integration bandwidth = 12 kHz to 20 MHz	

Table 2. Pin Description

Pin Symbol		Functionality				
			Output Enable	H"] : specified frequency output L: output is high impedance. Only output driver is disabled.		
	1	OE/ ST/NC	Standby	H []: specified frequency output L: output is low (weak pull down). Device goes to sleep mode. Supply current reduces to 1_std.	OE/ST/N	
			No Connect	Any voltage between 0 and Vdd or Open"] : Specified frequency output. Pin 1 has no function.	G	
	2	GND	Power	Electrical ground	0	
	3	OUT	Output	Oscillator output		
	4	VDD	Power	Power supply voltage.	Figu	

igure 1. Pin Assignments

Notes:

1. In OE or ST mode, a pull-up resistor of 10 kQ or less is recommended if pin 1 is not externally driven. If pin 1 needs to be left floating, use the NC option.

2. A capacitor of value $0.1\ pF$ or higher between Vdd and GND is required.

Dimensions and Patterns

3.2 x 2.5 x 0.75 mm

5.0x3.2x0.75 mm

7.0 x 5.0 x 0.90 mm

Notes:

Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of V will depend on the assembly location of the device.
 A capacitor of value 0.1 pF or higher between Vdd and GND is required.

低功耗可编程振荡器 P Power Oscillators

Recommended Land Pattern (Unit: mm) 【4】

YSO8208MR

高效能可编程振荡器 Ultra-performance Oscillators

Features

- Any frequency between 1 and 80 MHz accurate to 6 decimal places
- 100% pin-to-pin drop-in replacement to quartz-based oscillators
- ■Ultra low phase jitter: 0.5 ps (12 kHz to 20 MHz)
- Frequency stability as low as ±10 PPM
- Industrial or extended commercial temperature range
- ■LVCMOS/LVTTL compatible output
- Standard 4-pin packages: 2.5 x 2.0, 3.2 x 2.5, 5.0 x 3.2, 7.0 x 5.0 mm x mm
- Outstanding silicon reliability of 2 FIT or 500 million hourMTBF
- Ultra short lead time

Applications

- SATA, SAS, Ethernet, PCI Express, video, WiFi
- Computing, storage, networking, telecom, industrial control

Electrical

Parameter	Symbol	Min.	Typ.	Max.	Unit	Condition
				Frequency R	ange	
Output Frequency Range	f	1	-	80	MHz	
			Freque	ency Stability	and Aging	
Frequency Stability	F_stab	-10		+10	PPM	Inclusive of Initial tolerance at 25 °C, and variations over operatin
		-20		+20	PPM	temperature, rated power supply voltage and load
		-25		+25	PPM	
		-50		+50	PPM	
First year Aging	F_aging	-1.5		+1.5	PPM	25°C
10-year Aging		-5		+5	PPM	25°C
			Opera	ting Tempera	ture Range	
Operating Temperature Range	T_use	-20	-	+70	Р	Extended Commercial
		-40	_	+85	°C	Industrial
			Supply Volt	age and Curr	ent Consum	ption
Supply Voltage	Vdd	1.71	1.8	1.89	V	Supply voltages between 2.5V and 3.3V can be supported.
		2.25	2.5	2.75	V	
		2.52	2.8	3.08	V	
		2.97	3.3	3.63	V	
Current Consumption	Idd	-	31	33	mA	No load condition, $f = 20$ MHz, Vdd = 2.5V, 2.8V or 3.3V
			29	31	mA	No load condition, $f = 20$ MHz, Vdd = 1.8V
DE Disable Current	l_OD	—	_	31	mA	Vdd = 2.5V, 2.8V or 3.3V, OE = GND, output is Weakly Pulled Down
		-	-	30	mA	Vdd = 1.8 V. OE = GND, output is Weakly Pulled Down
Standby Current	l_std	—	_	70	мА	Vdd = 2.5V, 2.8V or 3.3V, ST = GND, output is Weakly Pulled Down
		-	-	10	МА	Vdd = 1.8 V. ST = GND, output is Weakly Pulled Down
			LVCM	OS Output Cl	naracteristic	S
Duty Cycle	DC	45		55	%	
Rise/Fall Time	Tr,Tf	_	1.2	2	ns	15 pF load, 10%-90% Vdd
Output Voltage High	VOH	90%	-	-	Vdd	IOH = -6 mA, IOL = 6 mA, (Vdd = 3.3V, 2.8V, 2.5V)
Output Voltage Low	VOL	-	-	10%	Vdd	
			I	nput Characte	ristics	L.
nput Voltage High	VIH	70%	-	-	Vdd	Pin 1,OE or ST
nput Voltage Low	VIL	-	-	30%	Vdd	Pin 1,OE or ST
nput Pull-up Impedance	ZJn	-	100	250	kQ	Pin 1, OE logic high or logic low, or ST logic high
	1	-				

Note: 1. All electrical specifications in the above table are specified with 15 pF output load and for all Vdd(s) unless otherwise stated.

Electrical Characteristics"

Parameter

		St	artup and Re
T_start	-	7	10
T oe	-	-	150
T_resume	_	6	10
			Jitter
TJitt	-	1.5	2
	-	2	3
T_phj	-	0.5	1
	T oe T_resume	 	T_start 7 T oe - T_resume 6 TJitt 2 2

1. All electrical specifications in the above table are specified with 15 pF output load and for all Vdd(s) unless otherwise stated.

Pin Configuration

		-		
	Pin	Symbol		Functionality
		OE/ST	Output Enable	H or Open[2] : specified frequency output L: output is high impedance. Only output driver is di
	1		Standby	H or Open [2] : specified frequency output L: output is low (weak pull down). Device goes to sl reduces to 1_std.
	2	GND	Power	Electrical ground [^]
	3	OUT	Output	Oscillator output
	4	VDD	Power	Power supply voltage ^[3]
_				

A pull-up resistor of <10 kD between OE/ ST pin and Vdd is recommended in high noise environment.
 A capacitor of value 0.1 pF between Vdd and GND is recommended.

Dimensions and Patterns

高效能可编程振荡器 Ultra-performance Oscillators

67

	Condition				
and Res	sume Timing	ç			
10	ms	Measured from the time Vdd reaches its rated minimum value			
50	ns	$f = 80 \text{ MHz}$, For other frequencies, $T_oe = 100 \text{ ns} + 3 \text{ cycles}$			
10	ms	In standby mode, measured from the time ST pin crosses 50% threshold. Refer to Figure 5.			
Jitter					
2	PS				
3	ps	f=75 MHz, Vdd = 1.8V			
1	ps	f = 10 MHz, Integration bandwidth = 12 kHz to 20 MHz			

YSO8208M

高效能可编程振荡器 Ultra-performance Oscillators YX 「扬兴晶振]

YSO8209M

R Features

Electrical Characteristics

Parameter	Symbol	Min.	iyp-	Max.	Unit	Condition
Output Frequency Range	f	80.000001		220	MHz	
Frequency Stability	F_stab	-10		+10	PPM	Inclusive of Initial tolerance at 25 °C, and variations over operating
		-20		+20	PPM	temperature, rated power supply voltage and load
		-25		+25	PPM	_
		-50		+50	PPM	-
Operating Temperature Range	T_use	-20		+70	°C	Extended Commercial
		-40		+85	°C	Industrial
Supply Voltage	Vdd	1.71	1.8	1.89	V	
		2.25	2.5	2.75	V	_
		2.52	2.8	3.08	V	
		2.97	3.3	3.63	V	
Current Consumption	Idd		34	36	mA	No load condition, f= 100 MHz, Vdd = 2.5V, 2.8V or 3.3V
			30	33	mA	No load condition, f= 100 MH Z Vdd = 1.8V
OE Disable Current	l_OD			31	mA	Vdd = 2.5V, 2.8V or 3.3V, OE = GND, output is Weakly Pulled Down
				30	mA	Vdd = 1.8 V. OE = GND, output is Weakly Pulled Down
Standby Current	l_std			70	MA	Vdd = 2.5V, 2.8V or 3.3V, ST = GND, output is Weakly Pulled Down
				10	pA	Vdd = 1.8 V. ST = GND, output is Weakly Pulled Down
Duty Cycle	DC	45		55	%	f<= 165 MHz, all Vdds.
		40		60	%	f> 165 MHz, all Vdds.
Rise/Fall Time	Tr,Tf	_	1.2	2	ns	15 pF load, 10%-90% Vdd
Output Voltage High	VOH	90%		-	Vdd	IOH = -6 mA, IOL = 6 mA, (Vdd = 3.3V, 2.8V, 2.5V) IOH = -3 mA, IOL = 3 mA, (Vdd = 1.8V)
Output Voltage Low	VOL	-		10%	Vdd	
Input Voltage High	VIH	70%		-	Vdd	Pin 1,OE or ST
Input Voltage Low	VIL			30%	Vdd	Pin 1,OE or ST
Input Pull-up Impedance	Z_in		100	250	kQ	Pin 1, OE logic high or logic low, or ST logic high
		2		—	MQ	Pin 1, ST logic low
Startup Time	T_start		7	10	ms	Measured from the time Vdd reaches its rated minimum value
OE Enable/Disable Time	T oe			115	ns	$f = 80$ MHz, For other frequencies, T_oe = 100 ns + 3 cycles
Resume Time	T_resume			10	ms	In standby mode, measured from the time ST pin crosses 50% threshold. Refer to Figure 5.
RMS Period Jitter	TJitt		1.5	2	PS	f = 156.25 MHz, Vdd = 2.5V, 2.8V or 3.3V
			2	3	ps	f= 156.25 MHz, Vdd = 1.8V
RMS Phase Jitter (random)	T_phj		0.5	1	ps	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz
First year Aging	F_aging	-1.5	_	+1.5	PPM	25°C
10-year Aging	7	-5		+5	PPM	25°C

Note:

All electrical specifications in the above table are specified with 15 pF +10% output load and for all Vdd(s) unless otherwise stated.
 Contact YXC for custom drive strength to drive higher or multiple load, or SoftEdge™ option for EMI reduction.

扬兴使命: 高效为客户提供时钟频率器件解决方案。

Dimensions and Patterns

5.0 x 3.2 x 0.75 mm

Ť

「扬兴晶

R

7.0 x 5.0 x 0.90 mm

18

Notes: 4. Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of Y'will depend on the assembly location of the device. 5. A capacitor of value 0.1 pF between Vdd and GND is recommended. 高效能可编程振荡器 Ultra-performance Oscillators

- Any frequency between 80.000001 and 220 MHz accurate to 6 decimal places
- 100% pin-to-pin drop-in replacement to quartz-based oscillators
- Ultra low phase jitter: 0.5 ps (12 kHz to 20 MHz)
- Frequency stability as low as ±10 PPM
- Industrial or extended commercial temperature range
- LVCMOS/LVTTL compatible output Standby or output enable modes ■ Standard 4-pin packages: 2.5 x 2.0,3.2 x 2.5,5.0 x 3.2,7.0 x 5.0 mm² Outstanding silicon reliability of 2 FIT or 500 million hour MTBF Ultra short lead time

Applications

SATA, SAS, Ethernet, 10-Gigabit Ethernet, SONET, PCI Express, video, Wireless

Computing, storage, networking, telecom, industrial control

YSO8209M

高效能可编程振荡器 Ultra-performance Oscillators

Top View

4 VDD

3 OUT

OE/ST 1

GND 2

Notes: 4. lop marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of Y will depend on the assembly location of the device. 5. A capacitor of value 0.1 yF between Vdd and GND is recommended.

Pin Configuration

	Pin	Symbol	Functionality							
			Output Enable	H or Open. 1 : specified frequency output L: output is high impedance. Only output driver is disabled.						
	1	OE/ST	H or Open QI: specified frequency output L: output is low (weak pull down). Device goes to sleep mode. Supply cu reduces to 1_std.							
F	2	GND	Power	Electrical ground						
	3	OUT	Output	Oscillator output						
	4	VDD	Power	Power supply voltage						

R

Note: 3. A pull-up resistor of <10 kQ between OE/ ST pin and Vdd is recommended in high noise environment

Dimensions and Patterns

Package Size - Dimensions (Unit: mm)【句 2.7 x 2.4 x 0.75 mm (100% compatible with 2.5 x2. 0 mm footprint)

Recommended Land Pattern (Unit: mm)

-2.2--**>** a, ¥

- 14 -

5.0 x 3.2 x 0.75 mm

「_{扬兴晶振}」 **YSO8918M**

R

YXC .000 100.000 B07CG

军工级可编程振荡器 +125*0 High Temp Oscillators

Features

- Frequencies between 1 MHz and 110 MHz accurate to 6 decimal places
- Operating temperature from -40°C to 125°C.
- Supply voltage of 1.8V or 2.5V to 3.3V
- Excellent total frequency stability as low as ± 20 ppm
- Low power consumption of 3.5 mA typical at 1.8V
- LVCMOS/LVTTL compatible output
- Industry-standard packages: 2.0 x 1.6,2.5 x 2.0, 3.2 x 2.5,5.0 x 3.2, 7.0 x 5.0 mm x mm

Applications

- Industrial, medical, non AEC-Q100 automotive, avionics and
- other high temperature applications
- Industrial sensors, PLC, motor servo, outdoor networking equipment, medical video
- cam, asset tracking systems, etc.

Electrical Specifications

Y

Table 1. Electrical Characteristics

All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise stated. Typical values are at 25°C and nominal supply voltage.

supply voltage.						
Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition
				Frequency R	ange	
Output Frequency Range	f	1	-	110	MHz	Refer to Table 7 for the exact list of supported frequencies list of supported frequencies
			Freque	ncy Stability	and Aging	
Frequency Stability	F_stab	-20	-	+20	ppm	Inclusive of Initial tolerance at 25°C, 1st year aging at25°C, and
		-25	_	+25	ppm	variations over operating temperature, rated power supply voltag and load (15 pF \pm 10%).
		-30	_	+30	PPm	
		-50	_	+50	ppm	
			Operat	ting Tempera	ture Range	·
Operating Temperature Range	T_use	4 0	—	+105	°C	Extended Industrial
(ambient)		-40	_	+125	°C	Automotive
			Supply Volt	age and Curr	ent Consum	iption
Supply Voltage	Vdd	1.62	1.8	1.98	V	
		2.25	2.5	2.75	V	
		2.52	2.8	3.08	V	
		2.7	3.0	3.3	V	
		2.97	3.3	3.63	V	
		2.25	—	3.63	V	
Current Consumption	Idd		3.8	4.7	mA	No load condition, $f = 20$ MHz, Vdd = 2.8V, 3.0V or 3.3V
			3.6	4.5	mA	No load condition, $f = 20$ MHz, Vdd = 2.5V
			3.5	4.5	mA	No load condition, $f = 20$ MHz, Vdd = $1.8V$
OE Disable Current	l_od		-	4.5	mA	Vdd = 2.5V to 3.3V, $OE = Low$, Output in high Z state.
			-	4.3	mA	$Vdd = 1.8V$, $OE = Low_J$ Output in high Z state.
Standby Current	l_std		2.6	8.5	pА	Vdd = 2.8V to 3.3V, $ST = Low$, Output is weakly pulled down
			1.4	5.5	pA	Vdd = 2.5V, ST = Low, Output is weakly pulled down
			0.6	4.0	HA	Vdd = 1.8V, ST = Low, Output is weakly pulled down
			LVCMO	OS Output Cl	haracteristic	28
Duty Cycle	DC	45	—	55	%	All Vdds
Rise/Fall Time	Tr,Tf	_	1.0	2.0	ns	Vdd = 2.5V, 2.8V, 3.0V or 3.3V, 20% - 80%
			1.3	2.5	ns	Vdd =1.8V,20%-80%
		-	1.0	3	ns	Vdd = 2.25V - 3.63V, 20% - 80%
Output High Voltage	VOH	90%	_	_	Vdd	IOH = V mA (Vdd = 3.0V or 3.3V) IOH =-3 mA (Vdd = 2.8V o 2.5V) IOH=-2mA(Vdd = 1.8V)
Output Low Voltage	VOL		-	10%	Vdd	IOL = 4 mA (Vdd = 3.0V or 3.3V) IOL = 3 mA (Vdd = 2.8V or 2.5V) IOL = 2 mA (Vdd = 1.8V)

Parameters

Table 1. Electrical Characteristics (continued) R

IN

Min.

]	Input Charac	teristics	
Input High Voltage	VIH	70%	_	-	Vdd	Pin 1,OEorST
Input Low Voltage	VIL	-	_	30%	Vdd	Pin 1,OE or ST
Input Pull-up Impedence	Z_in	50	87	150	kn	Pin 1, OE logic high or logic low, or ST logic high
		2	_	-	MQ	Pin 1, ST logic low
			Startu	p and Resum	ne Timing	
Startup Time	T_start	-	-	5	ms	Measured from the time Vdd reaches its rated minimum value
Enable/Disable Time	T_oe	-	-	130	ns	$f = 110$ MHz. For other frequencies, T_oe = 100 ns + 3 * clock periods
Resume Time	T_resume	-	-	5	ms	Measured from the time ST pin crosses 50% threshold
	I I			Jitter		•
RMS Period Jitter	TJitt		1.6	2.5	PS	f = 75MHz, Vdd = 2.5V, 2.8V, 3.0V or 3.3V
			1.9	3	PS	f = 75MHz, Vdd = 1.8V
Peak-to-peak Period Jitter	T_pk		12	20	PS	f = 75MH ∠ Vdd = 2.5V, 2.8V, 3.0V or 3.3V
			14	25	PS	f = 75MHz, Vdd = 1.8V
RMS Phase Jitter (random)	T_phj		0.5	0.8	PS	f = 75MHz, Integration bandwidth = 900 kHz to 7.5 MHz
			1.3	2	PS	f = 75MHz, Integration bandwidth = 12 kHz to 20 MHz

Table 2. Pin Description

	Pin	Symbol		Functionality
			Output Enable	H (1] : specified frequency output L: output is high impedance. Only output driv
	1	1 OE/ST/NC	Standby	H (1) : specified frequency output L: output is low (weak pull down). Device god current reduces to l_std.
			No Connect	Any voltage between 0 and Vdd or Open(1):S Pin 1 has no function.
	2	GND	Power	Electrical ground
Ī	3	OUT	Output	Oscillator output
Ī	4	VDD	Power	Power supply voltage?
				*

Notes:

 In OE or ST mode, a pull-up resistor of 10 kQ or less is recommended if pin 1 is not externally driven. If pin 1 needs to be left floating, use the NC option.

2. A capacitor of value 0.1 pF or higher between Vdd and GND is required.

Dimensions and Patterns

军工级可编程振荡器 + 12513 High Temp Oscillators

Condition

Figure 1. Pin Assignments

「扬兴晶 **YSO8918M**

军工级可编程振荡器 +125X) High Temp Oscillators

Dimensions and Patterns R

Notes:

3. Tbp marking: Y denotes manufacturing origin and XXXX denote s manufacturing lot number. The value of 🍸 will depend on the assembly location of the device. 4. A capacitor of value 0.1 pF or higher between Vdd and GND is required.

Electrical Specifications

Table 1. Electrical Characteristics

All Min and Max limits are specified over temperature and rated operating voltage with 15 pF output load unless otherwise stated. Typical values are at $25^{\circ}C$ and nominal supply voltage.

Parameters	Symbol	Min.	Тур.	Max.	Unit	Condition
				Frequency R	ange	
Output Frequency Range	f	1	-	110	MHz	Refer to Table 2 for the exact list of supported frequencies list of supported frequencies
			Freque	ency Stability	and Aging	
Frequency Stability	F_stab	-20	-	+20	ppm	Inclusive of Initial tolerance at 25°C, 1 st year aging at 25°C, and
		-25	-	+25	PPm	variations over operating temperature, rated power supply voltage load (15 pF \pm 10%).
		-30	-	+30	PPm	
		-50	-	+50	PPm	
			Opera	ting Tempera	ture Range	
Operating Temperature Range	T use	-55	-	+125	р	
			Supply Volt	age and Curr	ent Consum	ption
Supply Voltage	Vdd	1.62	1.8	1.98	V	
		2.25	2.5	2.75	V	
		2.52	2.8	3.08	V	
		2.7	3.0	3.3	V	
		2.97	3.3	3.63	V	
		2.25	-	3.63	V	
Current Consumption	Idd		3.8	4.7	mA	No load condition, $f = 20$ MHz, Vdd = 2.8V, 3.0V or 3.3V
			3.6	4.5	mA	No load condition, $f = 20 \text{ MHz}$, $Vdd = 2.5V$
			3.5	4.5	mA	No load condition, $f = 20$ MHz, Vdd = $1.8V$
OE Disable Current	l_od		-	4.5	mA	Vdd = 2.5V to 3.3V, $OE = Low$, Output in high Z state.
			-	4.3	mA	Vdd = 1.8V, OE = Low, Output in high Z state.
Standby Current	l_std		2.6	8.5	S	Vdd = 2.8V to 3.3V, ST = Low, Output is weakly pulled down
			1.4	5.5	pA	Vdd = 2.5V, ST = Low, Output is weakly pulled down
			0.6	4.0	pA	Vdd = 1.8V, ST = Low, Output is weakly pulled down
			LVCM	OS Output Cl	haracteristic	'S
Duty Cycle	DC	45	-	55	%	All Vdds
Rise/Fall Time	Tr,Tf	_	1.0	2.0	ns	Vdd = 2.5V, 2.8V, 3.0V or 3.3V, 20% - 80%
		_	1.3	2.5	ns	Vdd=1.8V,20%-80%
		_	1.0	3	ns	Vdd = 2.25V - 3.63V, 20% - 80%
Output High Voltage	VOH	90%	_	_	Vdd	IOH = -4 mA (Vdd = 3.0V or 3.3V) IOH = -3 mA (Vdd = 2.8V or 2.5V) IOH = -2 mA (Vdd = 1.8V)
Output Low Voltage	VOL	_	_	10%	Vdd	IOL = 4 mA (Vdd = 3.0V or 3.3V) $IOL = 3 mA (Vdd = 2.8V or 2.5V)$ $IOL = 2 mA (Vdd = 1.8V)$
					1	山化由子林 1

军工级可编程振荡器 + 12513 High Temp Oscillators

 \blacksquare Frequencies between 1 MHz and 110 MHz accurate to 6 decimal places ■ Operating temperature from -55° C to 125° C ■ Supply voltage of 1.8V or 2.5V to 3.3V

■ Excellent total frequency stability as low as ±20 ppm

■ Low power consumption of 3.5 mA typical at 1.8V

■LVCMOS/LVTTL compatible output

■ Industry-standard packages: 2.0 x 1.6, 2.5 x 2.0, 3.2 x 2.5, 5.0 x 3.2, 7.0 x 5.0 mm x mm

Applications:

■ Ruggedized equipment in harsh operating environment

军工级可编程振荡器 +125*0 High Temp Oscillators

.

Table 1. Electrical Characteristics Continued)

Parameters		Min.				Condition
			Inp	out Characte	eristics	
Input High Voltage	VIH	70%	_	-	Vdd	Pin 1, OE or ST
Input Low Voltage	VIL	_	_	30%	Vdd	Pin 1, OE or ST
Input Pull-up Impedence	ZJn	50	87	150	g	Pin 1, OE logic high or logic low, or ST logic high
		2	_	-	MQ	Pin 1, ST logic low
			Startu	p and Resu	ne Timing	
Startup Time	T_start		-	5	ms	Measured from the time Vdd reaches ils rated minimum value
Enable/Dlsable Time	T_oe	-	-	130	ns	$f = 110$ MHz. For other frequencies, $T_oe = 100$ ns + 3 * clock periods
Resume Time	T_resume	-	-	5	ms	Measured from the time ST pin crosses 50% threshold
				Jitter		·
RMS Period Jitter	TJitt		1.6	2.5	PS	f = 75MHz, Vdd = 2.5V, 2.8V, 3.0V or 3.3V
			1.9	3	PS	f= 75MHz, Vdd = 1.8V
Peak-to-peak Period Jitter	T_pk		12	20	PS	f= 75MHz, Vdd = 2.5V, 2.8V, 3.0V or 3.3V
			14	25	PS	f = 75MHz,Vdd = 1.8V
RMS Phase Jitter (random)	T_phj		0.5	0.8	PS	f = 75MHz, Integration bandwidth = 900 kHz to 7.5 MHz
			1.3	2	PS	f = 75MHz, Integration bandwidth = 12 kHz to 20 MHz

Table 2. Pin Description

Pin	Symbol		Functionality			
		Output Enable	H [1] ; specified frequency output L: output is high impedance. Only output driver is disabled.			
1	OE/ST/NC	Standby	H (1) : specified frequency output L: output is low (weak pull down). Device goes to sleep mode. Supply current reduces to 1_std.	C		
	No		Any voltage between 0 and Vdd or Open . J: Specified frequency output Connect Pin 1 has no function.			
2	GND	Power	Electrical ground			
3	OUT	Output	Oscillator output			
4	VDD	Power	Power supply voltage?			
T .			·			

Figure 1. Pin Assignments

nended Land Pattern (Unit: mm)^

「扬兴晶振]

Dimensions and Patterns

R

Package Size - Dimensions (Unit: mm)H]

2.5 x 2.0 x 0.75 mm

3.2 x 2.5 x 0.75 mm

5.0 x 3.2 x 0.75 mm

7.0 x 5.0 x 0.90 mm

Notes:

4. Top marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of Y will depend on the assembly location of the device. 5. A capacitor of value 0.1 ^[] F or higher between Vdd and GND is required.

•		
	Output Enable	H 【1】; specified frequency output L: output is high impedance. Only output driver is disabled.
OE/ST/NC Standby		H (1) : specified frequency output L: output is low (weak pull down). Device goes to sleep mode. Supply current reduces to 1_std.
	No Connect	Any voltage between 0 and Vdd or Open . : Specified frequency output. Pin 1 has no function.
GND	Power	Electrical ground
OUT	Output	Oscillator output
VDD	Power	Power supply voltage?
 VDD	Power	Power supply voltage?

Notes:
1. In 0E or ST mode, a pull-up resistor of 10kohm or less is recommended if pin 1 is not externally driven. If pin 1 needs to be left floating, use the NC option.
2. A capacitor of value 0.1 pF or higher between Vdd and GND is required.

Table 3. List of Supported Frequencies^

Frequency Range (-55 to +125X)

Min.	Max.
1.000000 MHz	61.222999 MHz
61.674001 MHz	69.239999 MHz
70.827001 MHz	78.714999 MHz
79.561001 MHz	80.159999 MHz
80.174001 MHz	80.779999 MHz
82.632001 MHz	91.833999 MHz
95.474001 MHz	96.191999 MHz
96.209001 MHz	96.935999 MHz
99.158001 MHz	110.000000 MHz

Notes:

3. Any frequency with in the min and max values in the above table are supported with 6 decimal places of accuracy.

Dimensions and Patterns

Package Size - Dimensions (Unit: mm).]

Recon

军工级可编程振荡器 + 125P High Temp Oscillators

Recommended Land Pattern (Unit: mm)回

YX 「扬兴晶振」 **YSO9121M**

差分可编程振荡器 Differential Oscillators

Features

- Any frequency between 1 MHz and 220 MHz accurate to 6 decimal places
- LVPECL and LVDS output signaling types
- 0.6ps RMS phase jitter (random) over 12 kHz to 20 MHz bandwidth
- . Frequency stability as low as ± 10 ppm
- Industrial and extended commercial temperature ranges
- . Industry-standard packages: 3.2x2.5, 5.0x3.2 and 7.0x5.0 mmxmm
- For frequencies higher than 220 MHz, refer to YSO9122MR datasheet

Applications

• 10GB Ethernet, SONET, SATA, SAS, Fibre Channel, PCI-Express

Telecom, networking, instrumentation, storage, servers

Electrical Characteristics

Parameter and Conditions	Symbol	Min.	Тур.	Max.	Unit	Condition
		LVPECL a	and LVDS	, Common E	lectrical	Characteristics
Supply Voltage	Vdd	2.97	3.3	3.63	V	
		2.25	2.5	2.75	V	
		2.25		3.63	V	Termination schemes in Figures 1 and 2 -XXordering code
		1.71	1.8	1.89	V	Only for LVDS output
Output Frequency Range	f	1		220	MHz	
Frequency Stability	F_stab	-10		+10	PPm	
		-20		+20	ppm	Inclusive of initial tolerance, operating temperature, rated powe
		-25		+25	PPm	supply voltage, and load variations
		-50		+50	PPm	
First Year Aging	F aging1	-2		+2	ppm	25°C
10-year Aging	F_aging10	-5		+5	PPm	25°C
Operating Temperature Range	T_use	■40		+85	°C	Industrial
		-20		+70	°C	Extended Commercial
Input Voltage High	VIH	70%			Vdd	Pin 1,OE or ST
Input Voltage Low	VIL			30%	Vdd	Pin 1.OE or ST
Input Pull-up Impedance	ZJn	-	100	250	kQ	Pin 1, OE logic high or logic low, or ST logic high
mput i un up impedance	2511	2	-	-	MQ	Pin 1, ST logic low
Start-up Time	T start		- 6	10	ms	Measured from the time Vdd reaches its rated minimum value.
Start-up Time	1_start	-	0	10	1115	
Resume Time	T_resume	-	6	10	ms	In Standby mode, measured from the time ST pin crosses 50% threshold.
Duty Cycle	DC	45	-	55	%	
		I	VPECL, I	OC and AC (Characte	ristics
Current Consumption	Idd		61	69	mA	Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE Disable Supply Current	l_OE			35	mA	OE = Low
Output Disable Leakage Current	l_leak			1	S	OE = Low
Standby Current	l_std			100	pA	ST = Low, for all Vdds
Maximum Output Current	l driver			30	mA	Maximum average current drawn from OUT+ or OUT-
Output High Voltage	VOH	Vdd-1.1		Vdd-0.7	V	See Figure 1(a)
Output Low Voltage	VOL	Vdd-1.9		Vdd-1.5	V	See Figure 1 (a)
Output Differential Voltage Swing	V Swing	1.2	1.6	2.0	V	See Figure 1 (b)
Rise/Fall Time	Tr,Tf		300	700	PS	20% to 80%, see Figure 1(a)
OE Enable/Dlsable Time	Тое		_	115	ns	f = 212.5 MHz - For other frequencies, T oe = 100ns + 3 period
RMS Period Jitter	TJitt		1.2	1.7	PS	f=100 MHz, VDD = 3.3V or 2.5V
			1.2	1.7	PS	f = 156.25 MHz, VDD = 3.3V or 2.5V
			1.2	1.7	PS	f = 212.5 MHz, VDD = 3.3V or 2.5V
RMS Phase Jitter (random)	T_phj		0.6	0.85	PS	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, a Vdds
			LVDS, DO	C and AC Cl	haracteris	
Current Consumption	Idd		47	55	mA	Excluding Load Termination Current, Vdd = 3.3V or 2.5V
DE Disable Supply Current	1 OE	-	-	35	mA	OE = Low
Differential Output Voltage	VOD	250	350	450	mV	See Figure 2

YSO9121M

R Electrical Characteristics (continued)

Parameter and Conditions	Symbol	Mln.	Тур.	Max.	Unit	Condition				
LVDS, DC and AC Characteristics (continued)										
Output Disable Leakage Current	l_leak	_		1	pA	OE = Low				
Standby Current	l_std	-	-	100	мА	ST = Low, for all Vdds				
VOD Magnitude Change	AVOD	-	-	50	mV	See Figure 2				
Offset Voltage	VOS	1.125	1.2	1.375	V	See Figure 2				
VOS Magnitude Change	AVOS		_	50	mV	See Figure 2				
Rise/Fall Time	Tr,Tf		495	700	PS	20% to 80%, see Figure 2				
OE Enable/Disable Time	T oe			115	ns	f=212.5 MHz- For other frequencies, T oe = 100ns + 3 period				
RMS Period Jitter	TJitt		1.2	1.7	PS	f= 100 MHz, VDD = 3.3V or 2.5V				
			1.2	1.7	PS	f= 156.25 MHz, VDD = 3.3V or 2.5V				
			1.2	1.7	PS	f = 212.5 MHz, VDD = 3.3V or 2.5V				
RMS Phase Jitter (random)	T_phj		0.6	0.85	PS	f = 156.25 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdds				

Pin Description

Pin	Map		Functionality
1	OE	Input	H or Open: specified frequency of impedance
	ST	Input	H or Open: specified frequency of L: Device goes to sleep mode. Su stri.
2	NC	NA	No Connect; Leave it floating or heat dissipation
3	GND	Power	VDD Power Supply Ground
4	OUT+	Output	Oscillator output
5	OUT-	Output	Complementary oscillator output
6	VDD	Power	Power supply voltage

Dimensions and Patterns

差分可编程振荡器 Differential Oscillators

Cond	ition
Conu	nuon

Dimensions and Patterns

差分可编程振荡器

Differential Oscillators

Notes:

Top Marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of "Y** will depend on the assembly location of the device.
 A capacitor of value 0.1 JIF between Vdd and GND is recommended.

Frequencies Not Supported

I Range 1: From 209.000001 MHz to 210.999999 MH:

Electrical Characteristics

Parameter and Conditions	Symbol	Min.	Тур.	Max.	Unit	Condition
		LVPECL :	and LVDS,	Common E	lectrical	Characteristics
Supply Voltage	Vdd	2.97	3.3	3.63	V	
		2.25	2.5	2.75	V	
		2.25		3.63	V	Termination schemes in Figures 1 and 2-XX ordering code
Output Frequency Range	f	220		625	MHz	
Frequency Stability	F_stab	-10		+10	PPm	
		-20		+20	ppm	Inclusive of initial tolerance, operating temperature, rated power
		-25		+25	PPm	supply voltage, and load variations
		-50		+50	PPm	-
First Year Aging	F_aging1	-2		+2	PPm	25°C
10-year Aging	F_aging10	-5		+5	PPm	25°C
		-40		+85	°C	Industrial
Operating Temperature Range	T_use	-20		+70	•c	Extended Commercial
Input Voltage High	VIH	70%			Vdd	Pin 1,OEorST
Input Voltage Low	VIL			30%	Vdd	Pin 1,OEorST
		-	100	250	kQ	Pin 1, OE logic high or logic low, or ST logic high
Input Pull-up Impedance	Z_in	2	-	-	MQ	Pin 1, ST logic low
Start-up Time	Tstart		6	10	ms	Measured from the time Vdd reaches its rated minimum value.
Resume Time	T_resume	-	6	10	ms	In Standby mode, measured from the time ST pin crosses 50% threshold.
Duty Cycle	DC	45		55	%	
	1	I	VPECL, D	C and AC	Characte	ristics
Current Consumption	Idd		61	69	mA	Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE Disable Supply Current	1 OE			35	mA	OE = Low
Output Disable Leakage Current	IJeak			1	pА	OE = Low
Standby Current	l std			100	pA	ST = Low, for all Vdds
Maximum Output Current	1 driver			30	mA	Maximum average current drawn from OUT+ or OUT-
Output High Voltage	VOH	Vdd-1.1		Vdd-0.7	V	See Figure 1(a)
Output Low Voltage	VOL	Vdd-1.9		Vdd-1.5	V	See Figure 1(a)
Output Differential Voltage Swing	V Swing	1.2	1.6	2.0	V	See Figure 1(b)
Rise/Fall Time	Tr,Tf		300	500	PS	20% to 80%, see Figure 1(a)
OE Enable/Disable Time	T oe			115	ns	f = 220 MHz - For other frequencies, T oe = 100ns + 3 period
RMS Period Jitter	TJitt		1.2	1.7	PS	f = 266 MHz, VDD = 3.3 V or 2.5 V
			1.2	1.7	PS	f = 312.5 MHz, VDD = 3.3V or 2.5V
			1.2	1.7	PS	f = 622.08 MHz, VDD = 3.3V or 2.5V
RMS Phase Jitter (random)	T_phj		0.6	0.85	PS	f = 312.5 MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdds
		1	LVDS, DC	and AC C	haracteri	
Current Consumption	Idd		47	55	mA	Excluding Load Termination Current, Vdd = 3.3V or 2.5V
OE Disable Supply Current	1_OE			35	mA	OE = Low
Differential Output Voltage	VOD	250	350	450	mV	See Figure 2

差分可编程振荡器 Differential Oscillators

Features

- Any frequency between 220 MHz and 625 MHz accurate to 6 decimal places LVPECL and LVDS output signaling types
- 0.6ps RMS phase jitter (random) over 12 kHz to 20 MHz bandwidth
- Frequency stability as low as ±10 ppm
- Industrial and extended commercial temperature ranges
- Industry-standard packages: 3.2x2.5, 5.0x3.2 and 7.0x5.0 mmxmm
- For frequencies lower than 220 MHz, refer to YSO9121 MR datasheet

Applications

- ■10GB Ethernet, SONET, SATA, SAS, Fibre Channel, PC I-Express
- Telecom, networking, instrumentation, storage, servers

差分可编程振荡器 Differential Oscillators

VDD

口 OUT-٠ OUT+

Electrical Characteristics (continued)

Parameter and Conditions	Symbol	Min.	Тур.	Max.	Unit	Condition			
	LVDS, DC and AC Characteristics (continued)								
Output Disable Leakage Current	IJeak	-	-	1	pA	OE = Low			
Standby Current	l_std	-	-	100	мА	ST = Low, for all Vdds			
VOD Magnitude Change	AVOD			50	mV	See Figure 2			
Offset Voltage	VOS	1.125	1.2	1.375	V	See Figure 2			
VOS Magnitude Change	AVOS		_	50	mV	See Figure 2			
Rise/Fall Time	Tr,Tf		495	600	PS	20% to 80%, see Figure 2			
OE Enable/Disable Time	T oe		_	115	ns	f = 220 MHz - For other frequencies, T oe = 100ns + 3 period			
RMS Period Jitter	TJitt		1.4	1.7	PS	f = 266 MHz, VDD = 3.3V or 2.5V			
			1.4	1.7	PS	f = 312.5 MHz, VDD = 3.3V or 2.5V			
			1.2	1.7	PS	f = 622.08 MHz, VDD = 3.3V or 2.5V			
RMS Phase Jitter (random)	T_phj		0.6	0.85	PS	f=312.5~MHz, Integration bandwidth = 12 kHz to 20 MHz, all Vdds			

Pin Description

Pin	Map		Functionality		
	OE	Input	H or Open: specified frequency output L: output is high impedance	Top View	7
1	ST	Input	H or Open: specified frequency output L: Device goes to sleep mode. Supply current reduces to l_std.	0E/srh'!	1
2	NC	NA	No Connect; Leave it floating or connect to GND for better heat dissipation	NCF?J	ſ
3	GND	Power	VDD Power Supply Ground	CNIDAL	
4	OUT+	Output	Oscillator output	GND3J	
5	OUT-	Output	Complementary oscillator output		
6	VDD	Power	Power supply voltage		

「扬兴晶振] **YSO9122M**

Dimensions and Patterns

Notes: 1. Top Marking: Y denotes manufacturing origin and XXXX denotes manufacturing lot number. The value of **¥" will depend on the assembly location of the device. 2. A capacitor of value 0.1 p.F between Vdd and GND is recommended.

Frequencies Not Supported

Range 1: Fro	om 251.000001	MHz to 263.9	99999 MHz	
Range 2: Fr	om 314.000001	MHz to 422.9	99999 MHz	
Range 3: Fr	om 502.000001	MHz to 527.9	99999 MHz	

Dimensions and Patterns

R

差分可编程振荡器 Differential Oscillators

YSO1532MK

KHZ 超小型系列 32KHZ Ultra small Oscillators

Features

- Smallest footprint in chip-scale (CSP): 1.5 x 0.8 mm
- Fixed 32.768 kHz
- <10 ppm frequency tolerance</p>
- Ultra-low power: <1 pA
- Directly interfaces to XTAL inputs
- Supports coin-cell or super-cap battery backup voltages
- Vdd supply range: 1.5V to 3.63V over -40°C to +85°C
- Oscillator output eliminates external load caps
- Internal filtering eliminates external Vdd bypass cap
- NanoDriveTM programmable output swing for lowest power

Applications

- Mobile Phones, Tablets, Health and Wellness Monitors, Fitness Watches
- Sport Video Cams, Wireless Keypads, Ultra-Small Notebook PC
- Pulse-per-Second (pps) Timekeeping, RTC Reference Clock

MEMS

Electrical Characteristics

Parameter						Condition
			Frequ	ency and S	tability	
Fixed Output Frequency	Fout		32.768		kHz	
			F	requency S	tability	
				10	PPm	$T_A = 25^{\circ}C$, post reflow, Vdd: 1.5V - 3.63V.
Frequency Tolerance (1)	F_tol			20	PPm	$T_A = 25^{\circ}C$, post reflow with board-level underfill, Vdd: 1.5V-3.63V.
				75		$T_A = -10^{\circ}Cto+70^{\circ}C$, Vdd: 1.5V-3.63V.
Frequency Stability 以】	F_stab			100	PPm	$T_{A} = -40^{\circ}$ C to $+85^{\circ}$ C, Vdd: 1.5 V $- 3.63$ V.
				250	1	$T_A = -10^{\circ}C$ to $+70^{\circ}C$, Vdd: 1.2V-1.5V.
25°C Aging		-1		1	PPm	1st Year
			Supply Volta	ige and Cur	rent Consu	mption
		1.2		3.63	V	$T_A = -10^{\circ}Cto + 70^{\circ}C$
Operating Supply Voltage	Vdd	1.5		3.63	V	$T_{\rm A} = -40^{\circ} \rm C \ to \ +85^{\circ} \rm C$
			0.90			TA = 25°C, Vdd: 1.8V. No load
Core Operating Current 间	Idd			1.3	МА	$T_A = -10^{\circ}$ C to $+70^{\circ}$ C, Vdd max: 3.63V. No load
				1.4		$T_A = -40^{\circ}$ C to $+85^{\circ}$ C, Vdd max: 3.63V. No load
Output Stage Operating Current 岡	ldd_out		0.065	0.125	pA/Vpp	$T_A = -40^{\circ}$ C to +85°C, Vdd: 1.5V – 3.63V. No load
Power-Supply Ramp	t_Vdd_ Ramp			100	ms	Vdd Ramp-up from 0 to 90%, $T_A = -40^{\circ}C$ to $+85^{\circ}C$
			180	300		$T_A = -40^{\circ}C < T_A < +50^{\circ}C$, valid output
Start-up Time at Power-up ^[4]	t_start			450	ms	$T_A = +50^{\circ}C < T_A < +85^{\circ}C$, valid output
			Operat	ing Temper	ature Rang	e
Commercial Temperature	т	-10		70	°C	
Industrial Temperature	T_use	-40		85	°C	

Notes:

 Measured peak-to-peak. Tested with Agilent 53132A frequency counter. Due to the low operating frequency, the gate time must be >100 ms to ensure an accurate frequency measurement.
 Measured peak-to-peak. Inclusive of Initial Tolerance at 25°C, and variations over operating temperature, rated power supply voltage and load. Stability is specified for two operating voltage ranges. Stability progressively degrades with supply voltage below 1.5V.

 Core operating current does not include output driver operating current or load current. To derive total operating current (no load), add core operating current + (0.065 pA/V) ^(output voltage swing).
 Measured from the time Vdd meaber 1.5V.

4. Measured from the time Vdd reaches 1.5V.

YSO1532MK

Electrical Characteristics (continued)

		,						
Parameter	Symbol	Min.	Тур.	Max.	Unit	Condition		
	LVCI	MOS Output	Option, T _A =	-40°C to +8:	5°C, typical	values are at $T_A = 25^{\circ}C$		
	tr. tf 100 200 10-90% (Vdd), 15 pF load, Vdd = 1.5V to 3.63V							
Output Rise/Fall Time				50	1	10-90% (Vdd), 5 pF load, Vdd > 1.62V		
Output Clock Duty Cycle	DC	48		52	%			
Output Voltage High	VOH	90%			v	Vdd: 1.5V-3.63V. I _{OH} = -10 JA, 15 pF		
Output Voltage Low	VOL			10%	v	Vdd: 1.5V-3.63V. I _{OI} = 10 JA, 15 pF		
		Na	noDrive™ Pı	ogrammable	, Reduced S	wing Output		
Output Rise/Fall Time	tf.tf			200	ns	30-70% (Vol/Voн), 10 pF Load		
Output Clock Duty Cycle	DC	48		52	%			
AC-coupled Programmable Output Swing	V_sw		0.20 to 0.80		v	YSO1532MK does not internally AC-couple. This output description is intended for a receiver that is AC-coupled. See Table 2 for acceptable NanoDrive swing options.Vdd: 1.5V - 3.63V, 10 pF Load, l ₀ H / 10L = ±0.2 JA. Vdd: 1.5V - 3.63V, 10 ₁₀₁ = -0.2 pA, 10		
DC-Biased Programmable Output Voltage High Range	VOH		0.60 to 1.225		v	pF Load. See Table 1 for acceptable V_{OH}/VO_L setting levels. Vdd: 1.5V-3.63V. I_{OL} = 0.2 pA, 10 pF Load. See Table 1 for		
DC-Biased Programmable Output Voltage Low Range	VOL		0.35 to 0.80		v	acceptable $V_{0H}V_{0L}$ setting levels.		
Programmable Output Voltage Swing Tolerance		-0.055		0.055	v	$T_A = -40^{\circ}C$ to $+85^{\circ}C$, Vdd = 1.5V to 3.63V.		
				Jitter				
Period Jitter	TJitt		35		^{ns} RMS	I Cycles = 10,000, T _A = 25°C, Vdd = 1.5V-3.63V		

Pin Configuration

Pin	Symbol	I/O	Functionality
1,4	GND	Power Supply Ground	Connect to ground. Acceptable to connect pin 1 and 4 to GND.
2	CLK Out	OUT	Oscillator clock output The CLK can drive into a Ref 32kHz XTAL input. When driving into an ASIC or chin the CLK Out is typically connected directly to the XTA The output driver is intended to be insensitive to capac
3	Vdd	Power Supply	Connect to power supply 1.2V M Vdd M 3.63V. Unde does not require external bypass/decoupling capacitor(internal power-supply filtering, see the <i>Power Supply 1</i> description. Contact factory for applications that require a wider op

Dimensions and Patterns

Package Size - Dimensions (Unit: mm)

1.55x0.85 mm CSP

KHZ 超小型系列 32KHZ Ultra small Oscillators

together. Both pins must be connected

CLK input or into an ASIC or chip-set' ip-set oscillator input (X IN and X Out) 'AL IN pin. No need for load capacitors acitive loading.

er normal operating conditions, Vdd (s). For more information about the *Noise Immunity* section in the detailed

perating supply voltage range.

CSP Package (Top View)

Recommended Land Pattern (Unit: mm)

Recommend 4-mil (0.1mm) stencil thickness

System Block Diagram

KHZ 超小型系列

32KHZ Ultra small Oscillators

Note: 1. For the smallest 32 kHz XO in CSP (1.2mm²), consider the YSO1532MK

「扬兴晶振]

Absolute Maximum

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Test Condition	Value	Unit
Continuous Power Supply Voltage Range (Vdd)		-0.5 to 3.63	V
Short Duration Maximum Power Supply Voltage (Vdd)	<30 minutes	4.0	V
Continuous Maximum Operating Temperature Range	Vdd = 1.5V-3.63V	105	°C
Short Duration Maximum Operating Temperature Range	Vdd = 1.5V-3.63V, 530 mins	125	°C
Human Body Model ESD Protection	HBM, JESD22-A114	3000	V
Charge-Device Model (CDM) ESD Protection	JESD220C101	750	V
Machine Model (MM) ESD Protection	» = 25°C	300	V
Latch-up Tolerance	JESD78 C	ompliant	
Mechanical Shock Resistance	Mil 883, Method 2002	10,000	g
Mechanical Vibration Resistance	Mil 883, Method 2007	70	g
1508 CSP Junction Temperature		150	°C

Electrical Characteristics

Parameter	Symbol Min. Typ. Max. Unit					Condition		
			Free	quency and s	Stability			
Fixed Output Frequency	Fout		32.768		kHz			
			F	requency Sta	ability			
Frequency Tolerance	FJol			20	ppm	TA= 25°C, post reflow, Vdd: 1.5V - 3.63V.		
				75		T_A = -10°C to +70°C, Vdd: 1.5V - 3.63V.		
Frequency Stability ^{13]}	F_stab			100	PPm	T_A = -40°C to +85°C, Vdd: 1.5V- 3.63V.		
				250	1	T _A =-10°C to +70°C, Vdd: 1.2V-1.5V.		
25°C Aging		-1		1	ppm	1st Year		
			Supply Volta	age and Curr	ent Consum	ption		
	Vdd	1.2		3.63	V	TA= -10° C to $+70^{\circ}$ C		
Operating Supply Voltage		1.5		3.63	v	TA=V0°C to +85°C		
			0.90			T _A =25°C,Vdd: 1.8V. No load		
Core Operating Current 【句	Idd			1.3	ΓA	T _A =-10°C to +70°C, Vdd max: 3.63V. No load		
				1.4	1	TA= -40°C to +85°C, Vdd max: 3.63V. No load		
Output Stage Operating Current 问	ldd out		0.065	0.125	pA/Vpp	T _A = -40°C to +85°C, Vdd: 1.5V- 3.63V. No load		
Power-Supply Ramp	t_Vdd_ Ramp			100	ms	T_{A} = -40°C to +85°C, 0 to 90% Vdd		
G			180	300		$T_A = -40^{\circ}C M TA (+50^{\circ}C, valid output)$		
Start-up Time at Power-up ^[5]	t_start			450	ms	$TA = +50^{\circ}C < TA $ (+85°C, valid output		
			Operat	ing Tempera	ture Range			
Commercial Temperature	T	-10		70	°C			
Industrial Temperature	T_use	■ 40		85	°C			

Notes: 2. Measured peak-to-peak. Tested with Agilent 53132A frequency counter. Due to the low operating frequency, the gate time must be 2100 ms to ensure an accurate

Measured peak-to-peak. Tested with Agilent 53152A frequency counter. Due to the low operating frequency, the gate time must be 2100 ms to ensure an accurate frequency measurement.
 Stability is specified for two operating voltage ranges. Stability progressively degrades with supply voltage below 1.5V. Measured peak-to-peak. Inclusive of Initial Tolerance at 25°C, and variations over operating temperature, rated power supply voltage and load.
 Core operating current does not include output driver operating current or load current. To derive total operating current (no load), add core operating current + (0.065 | A/V) * (peak-to-peak output Voltage swing).
 Measured from the time Vdd reaches 1.5V.

扬兴愿景: 与员工客户共成长, 共圆中华电子梦!

KHZ 超小型系列 32KHZ Ultra small Oscillators

Features

■Small SMD package: 2.0 x 1.2 mm (2012)^[1] ■ Pin-compatible to 2012 XTAL SMD package ■ Fixed 32.768 kHz output frequency ■<20 ppm frequency tolerance ■ Ultra-low power: <1 月A ■ Supports coin-cell or super-cap battery backup voltages ■Vdd supply range: 1.5V to 3.63V over -40° C to +85° C ■Oscillator output eliminates external load caps \blacksquare Internal filtering eliminates external Vdd bypass cap ■ NanoDrive[™] programmable output swing for lowest power

Applications

■ Mobile Phones, Tablets, Health and Wellness Monitors, Fitness Watche ■ Sport Video Cams, Wireless Keypads, Ultra-Small Notebook PC ■ Pulse-per-Second (pps) Timekeeping, RTC Reference Clock

TempFlat **МЕМSTM**

Parameter

Output Rise/Fall Time

Output Voltage High

Output Voltage Low

Output Rise/Fall Time

Voltage High Range

Voltage Low Range

Tolerance Period Jitter

Swing

Output Clock Duty Cycle

AC-coupled Programmable Output

DC-Biased Programmable Output

DC-Biased Programmable Output

Programmable Output Voltage Swing

Output Clock Duty Cycle

Electrical Characteristics (continued)

Symbol

u, tr

DC

VOH

VOL

tf,tf DC

V sw

VOH

VOL

TJitt

Min.

48

90%

48

-0.055

YSO1533M

Typ.

100

).20 to

0.60 to

0.35 to

1.225

0.80

35

0.80

Max.

200

50

52

10%

200 52

0.055

NanoDrive[™] Programmable, Reduced Swing Output

LVCMOS Output Option, TA=~40°C to +85®C, typical values are at TA=25°C

Unit

%

V

V

ns

%

V

V

V

V

KHZ 超小型系列 32KHZ Ultra small Oscillators

Condition

YSO1533MK does not internally AG-couple. This output description is intended fora receiver that is AC-coupled. See Table 2for acceptable

Vdd: 1.5V - 3.63V. IQH = -0.2 pA, 10 pF Load. See Table 1 for acceptable

Vdd: 1.5V - 3.63V. IQL = 0.2 pA, 10 pF Load. See Table 1 for acceptable

Vdd: 1.5V → 3.63V, 10 pF Load, IQH / IOL = ±0.2 □ A.

10-90% (Vdd), 15 pF load, Vdd = 1.5V to 3.63V

10-90% (Vdd), 5 pF load, Vdd 21.62V

Vdd: 1.5V — 3.63V. IQH = -10MA, 15 pF

Vdd: 1.5V - 3.63V. IQL= 10 P A, 15 pF

30-70% (VQL/VOH), 10 pF Load

NanoDrive swing options

VOH/VQL setting levels.

VOH/VQL setting levels.

 $T_A = -40^{\circ}$ C to $+85^{\circ}$ C, Vdd = 1.5V to 3.63V.

ERMS Cycles = 10,000, TA = 25°C, Vdd = 1.5V-3.63V

YSO1533M

Dimensions and Patterns

Package Size - Dimensions (Unit: mm) 2.0 x 1.2 mm SMD

Pin Configuration

SMD Pin	Symbol	I/O	Functionality
1	NC		No Connect. Will not respond to any input signal. When interfacing to an MCU's XTAL input pins, this pin is typically connected to the receiving IC's X Out pin. In this case, the YSO1533MKwill not be affected by the signal on this pin. If not interfacing to an XTAL oscillator, leave pin1 floating (noconnect).
2	GND	Power Supply Ground	Connect to ground. All GND pins must be connected to power supply ground.
3	CLK Out	OUT	Oscillator clock output. When interfacing to an MCU's XTAL, the CLK Out is typically connected to the receiving IC's X IN pin. The YSO1533MK oscillator output includes an internal driver. As a result, the output swing and operation is not dependent on capacitive loading. This makes the output much more flexible, layout independent, and robust under changing environmental and manufacturing conditions.
4	Vdd		Connect to power supply 1.5V W VddW 3.63V for operation over -40°C to +85°C temperature range. Under normal operatingconditions, Vdd does not require external bypass/decoupling capacitor(s). Internal powersupply filtering will reject more than ±150 mVpp with frequency components through 10MHz.Contact factory for applications that require a wider operating supply voltage range.

SMD Package (Top View)

88

KHZ 超小型系列 32KHZ Ultra small Oscillators

Recommended Land Pattern (Unit: mm)

YXC Only SPL

Y_X te

XTAL Compatible SPL

System Block Diagram

KHZ 超小型系列

32KHZ Ultra small Oscillators

Figure 1.

Absolute Maximum

Attempted operation outside the absolute maximum ratings may cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Test Condition	Value	Unit	
Continuous Power Supply Voltage Range (Vdd)		-0.5 to 3.63	V	
Short Duration Maximum Power Supply Voltage (Vdd)	≪30 minutes, over -40°C to +85°C	4.0	V	
Continuous Maximum Operating Temperature Range	Vdd = 1.5V-3.63V	105	°C	
Short Duration Maximum Operating Temperature Range	Vdd = 1.5V-3.63V, 530 mins	125	°C	
Human Body Model ESD Protection	HBM.JESD22-A114	3000	V	
Charge-Device Model (CDM) ESD Protection	JESD220C101	750	V	
Machine Model (MM) ESD Protection	$T_A = 25^{\circ}C$	300	V	
Latch-up Tolerance	JESD78 Compliant			
Mechanical Shock Resistance	Mil 883, Method 2002	10,000	g	
Mechanical Vibration Resistance	Mil 883, Method 2007	70	g	
2012 SMD J unction T em perature		150	°C	
Storage Temperature		-65°C to150°C		

Electrical Characteristics

[Parameter	Symbol	Min.	Тур-	Max.	Unit	Condition
			Fre	equency and	Stability	
Output Frequency	Fout	32.768		kHz		
Frequency Stability Over		-5.0		5.0		
Temperature (1)	F_stab	-10		10	PPm	
(without Initial Offset 闫)		-20		20		
	F_stab	-10		10		
Frequency Stability Over Temperature (with Initial Offset 囚)		-13		13	PPm	
		-22		22		
		-0.75		0.75	ppm	1.8V ±10%
Frequency Stability vs Voltage	F_vdd	-1.5		1.5	PPm	1.5V-3.63V
First Year Frequency Aging	F_aging	-1.0		1.0	PPm	$T_{\rm A} = 25^{\circ}C, \ \rm Vdd = 3.3 \rm V$
			Jitter Per	formance O	K = over ten	np)
Long Term Jitter				2.5	□ Spp	81920 cycles (2.5 sec), 100 samples
Period Jitter			35		"RMS	Cycles = $10,000, T_A = 25^{\circ}C, Vdd = 1.5V-3.63V$
			Supply Volt	age and Curi	ent Consum	nption
Operating Supply Voltage	Vdd	1.5		3.63	V	$T_A = -40^{\circ}C$ to $+85^{\circ}C$
	Idd		0.99			$T_A = 25^{\circ}$ C, Vdd = 1.8V, LVCMOS Output configuration, No Load
Core Supply Current				1.52	MA	$T_A = -40^{\circ}C$ to $+85^{\circ}C$, Vdd $= 1.5V-3.63V$, No Load
Power-Supply Ramp	t_Vdd_ Ramp			100	ms	Vdd Ramp-Up 0 to 90% Vdd, $T_A = -40^{\circ}C$ to $+85^{\circ}C$
	p t_start		180	300	ms	$T_A = -40^{\circ}C + 60^{\circ}C$, valid output
Start-up Time at Power-up				350		$T_A = +60^{\circ}$ C to $+70^{\circ}$ C, valid output
. 1				380		$T_A = +70^{\circ}$ C to +85°C, valid output
Notes:			1			

No board level underfill, Measured as peak-to-peak/2. Inclusive of 3x-reflow and ±20% load variation. Tested with Agilent 53132A frequency counter. Due to the low operating frequency, the gate time must be 2100 ms to ensure an accurate frequency measurement.
 Initial offset is defined as the frequency deviation from the ideal 32.768 kHz at room temperature, post reflow.
 Core operating current does not include output driver operating current or load current. To derive total operating current (no load), add core operating current + output driver operating current, which is a function of the output voltage swing. See the description titled, Calculating Load Current.

KHZ 超小型系列 32KHZ Ultra small Oscillators

Features

- 32.768 kHz ±5, ±10, ±20 ppm frequency stability options over temp
- World's smallest TCXO in a 1.5 x 0.8 mm CSP
- Operating temperature ranges: 0°C to +70°C , -40°C to +85°C
- Ultra-low power: <1 pA
- Vdd supply range: 1.5V to 3.63V
- Improved stability reduces system power with fewer network timekeeping updates
- Na no Drive[™] programmable output swing for lowest power and direct XTAL SoC input interface
- Internal filtering eliminates external Vdd bypass cap and saves space

Applications

- Smart Meters (AMR), Health and Wellness Monitors
- Pulse-per-Second (pps) Timekeeping, RTC Reference Clock

TempFlat **MEMSTM**

YSO1552MK

KHZ 超小型系列 32KHZ Ultra small Oscillators

I	Parameter	Symbol	Min.	Тур-	Max.	Unit	Condition	
				Operat	ing Temper	ature Ran	ge	
Comm	nercial Temperature	. .	0		70	°C		
Indust	trial Temperature	Op_Temp	■ 40		85	°C		
				I	VCMOS O	utput	•	
			100	200		10-90% (Vdd), 15 pF Load		
Output Rlse/Fall Time					50		10-90% (Vdd), 5 pF Load, Vdd N 1.62V	
Outpu	it Clock Duty Cycle	DC	48		52	%		
Outpu	ıt Voltage High	VOH	90%			V	Vdd: 1.5V-3.63V. I _{OH} = -1 ^[] A, 15 pF Load	
Outpu	it Voltage Low	VOL			10%	V	Vdd: 1.5V-3.63V. IoL = 1 ¹ A, 15 pF Load	
				NanoDrive	e™ Reduced	d Swing Ou	utput	
Outpu	ıt Rise/Fall Time	tf.tf			200	ns	30-70% (V _{0L} /V _{0H}). 10 pF Load	
Outpu	it Clock Duty Cycle	DC	48		52	%		
	oupled Programmable at Swing	V_sw		0.20 to 0.80		v	YSO1552MK does not internally AC-couple. This output description is intended for a receiver that is AC-coupled. Vdd: 1.5' - 3.63V, 10 pF Load, $l_{0H} / l_{0L} = \pm 0.2$ pA	
	iased Programmable Output ge High Range	VOH		0.6 to 1.225		v	Vdd: 1.5V-3.63V. I _{OH} = -0.2 ^[] A, 10 pF Load	
	iased Programmable Output ge Low Range	VOL		0.35 to 0.80		v	Vdd: 1.5V - 3.63V. I _{OL} = 0.2 ^[J] A, 10 pF Load	
	ammable Output Voltage Tolerance		-0.055		0.055	v	$T_A = -40^{\circ}$ C to +85°C, Vdd = 1.5V to 3.63V.	

Pin Configuration

CSP Pin	Symbol	I/O	Functionality	CSP Package (Top View)
1,4	GND	Power Supply Ground	Connect to ground. All GND pins must be connected to power supply ground. The GND pins car be connected together, as long as both GND pins are connected ground.	
2	CLK Out	OUT	Oscillator clock output. When interfacing to an MCU's XTAL, the CLK Out is typically connected to the receiving IC's X IN pin. The YSO1552MK oscillator output includes an internal driver. As a result, the output swing and operation is not dependent on capacitive loading. This makes the output much more flexible, layout independent, and robust under changing environmental and manufacturing conditions.	GND 1 4 GND
3	Vdd	Power Supply	Connect to power supply 1.5V M Vdd W 3.63V. Under normal operating conditions, Vdd does not require external bypass/decoupling capacitor(s). For more information about the internal power-supply filtering, see <i>Power-Supply Noise Immunity setition</i> in the detailed description. Contact factory for applications that require a wider operating supply voltage range.	CLK Out 2 3 Vdd

Dimensions and Patterns

Package Size - Dimensions (Unit: mm)

Recommend 4-mil (0.1mm) stencil thickness

YSO1552MK

System Block Diagram

Absolute Maximum

Attempted operation outside the absolute maximum ratings cause permanent damage to the part. Actual performance of the IC is only guaranteed within the operational specifications, not at absolute maximum ratings.

Parameter	Test Condition	Value	Unit			
Continuous Power Supply Voltage Range (Vdd)		-0.5 to 3.63	V			
Short Duration Maximum Power Supply Voltage (Vdd)	«30 minutes	4.0	V			
Continuous Maximum Operating Temperature Range	Vdd = 1.5V-3.63V	105	°C			
Short Duration Maximum Operating Temperature Range	Vdd = 1.5V-3.63V, ^30 mins	125	°C			
Human Body Model (HBM) ESD Protection	JESD22-A114	3000	V			
Charge-Device Model (CDM) ESD Protection	JESD22-A115	750	V			
Machine Model (MM) ESD Protection	JESD22-C101	300	V			
Latch-up Tolerance	JESD78 Complia	JESD78 Compliant				
Mechanical Shock Resistance	Mil 883, Method 2002	10,000	g			
Mechanical Vibration Resistance	Mil 883, Method 2007	70	g			
1508 CSP Junction Temperature		150	°C			
Storage Temperature		-65°Cto150°C				

KHZ 超小型系列 32KHZ Ultra small Oscillators

生产流程 Prodution Flow

1

石英晶体生产流程 Quartz Crystal Prodution Flow

MEMS 可编程晶振生产流程 MEMS Programmable Oscillator Production Flow

工厂设备 Factory Equipment

