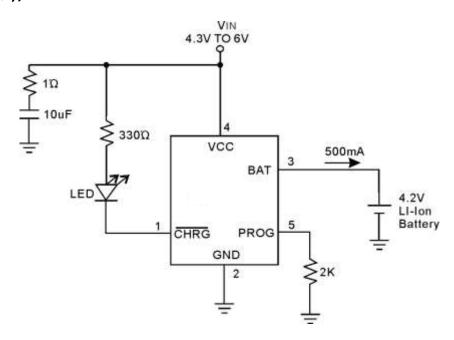


概述

XW4054是一款单节锂离子电池恒流/恒压线性充电器,简单的外部应用电路非常适合便携式设备应用,适合 USB 电源和适配器电源工作,内部采用防倒充电路,不需要外部隔离二极管。热反馈可对充电电流进行自动调节,以便在大功率操作或高环境温度条件下对芯片温度加以限制。

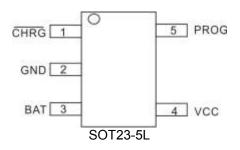
XW4054充电截止电压为 4.2V, 充电电流可通过外部电阻 进行设置。当充电电流降至设定值的 1/10 时, XW4054 将 自动结束充电过程。

当输入电压被移掉后,XW4054自动进入低电流待机状态,将待机电流降至 1uA 以下。XW4054在有输入电源时也可置于停机模式,从而将工作电流降至 30uA。


特点

- 最大充电电流: 500mA
- 无需 MOSFET、检测电阻器和隔离二极管
- 智能热调节功能可实现充电速率最大化
- 智能再充电功能
- 预充电压: 4.2V±1%
- C/10 充电终止
- 待机电流 30uA
- BAT 超低自耗电 1uA
- 2.9V 涓流充电阈值
- 单独的充电、结束指示灯控制信号
- 封装形式: SOT23-5

应用


- 手机、PDA、MP3/MP4
- 蓝牙耳机、GPS
- 充电座
- 数码相机、Mini 音响等便携式设备

典型应用电路

管脚

定购信息

封装	定购型号	包装形式	产品正印
SOT23-5L	XW4054	Tape and Reel	

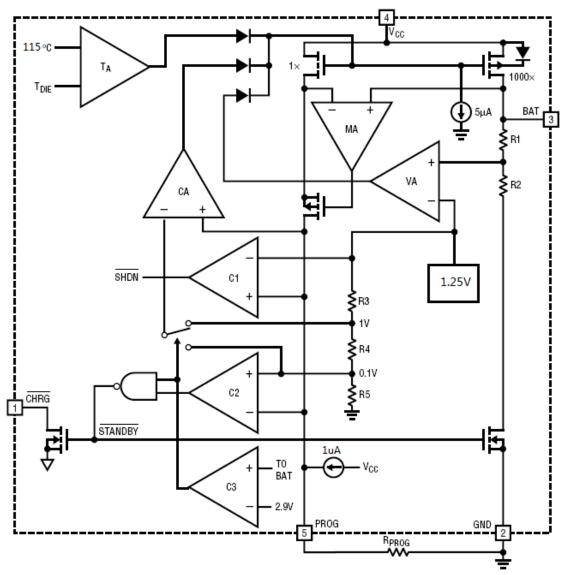
极限参数(注1)

符号	参数	额定值	单位
VCC	输入电源电压	-0.3~7	V
PROG	PROG 脚电压	-0.3~0.3	V
BAT	BAT 脚电压	-0.3~7	V
CHRG	CHRG 脚电压	-0.3~7	V
T _{BAT_SHT}	BAT 脚短路持续时间	连续	-
I _{BAT}	BAT 脚电流	600	mA
I _{PROG}	PROG 脚电流	600	uA
T_OP	工作环境温度	-40~85	$^{\circ}$
T _{STG}	储存温度	-65~125	$^{\circ}$
ESD	НВМ	2000	V
LSD	MM	200	V

注 1: 最大极限值是指超出该工作范围芯片可能会损坏。

电气参数(注2,3)

无特殊说明, VIN=12V, Ta=25℃


符号	参数	测试条件	最小值	典型值	最大值	单位
V _{CC}	输入电源电压		4.0	5	6	V
I _{CC}	输入电源电流	充电模式,R _{PROG} =2K		110	250	uA
		待机模式(充电终止)		40	80	uA
		停机模式(R _{PROG} 未连接,		30	60	uA
		$V_{CC} < V_{BAT}, V_{CC} < V_{UV}, V_{CE} = 0V$				
V_{FLOAT}	输出浮充电压	0°C≤Ta≤85°C	4.158	4.2	4.242	V
I _{BAT}	BAT引脚电流	R _{PROG} =10K,电流模式	90	100	110	mA
		R _{PROG} =2K,电流模式	450	500	550	mA
		待机模式(V _{CC} =5V,V _{BAT} =4.2V)	0	2	4	μΑ
		停机模式(R _{PROG} 未连接或		0	2	μA
		V _{CE} =0V)		U	2	μΑ
		睡眠模式,V _{cc} =0		0	2	μΑ
I _{TRIKL}	涓流充电电流	$V_{BAT} < V_{TRIKL}, R_{PROG} = 2K$	40	60	80	mA
V_{TRIKL}	涓流充电阈值电压	R _{PROG} =2K,V _{BAT} 上升	2.8	2.9	3.0	V
V_{TRHYS}	涓流充电迟滞电压	R _{PROG} =2K	60	80	100	mV
V_{UV}	Vcc欠压保护阈值电压	Vcc上升	3.5	3.7	3.9	V
V_{UVHYS}	Vcc欠压保护迟滞电压	Vcc下降	3.5	3.7	3.9	٧
V _{ASD}	V _{CC} -V _{BAT} 阈值电压	V _{cc} 上升	60	100	140	mV
		V _{cc} 下降	5	30	50	mV
I _{TERM}	C/10 终止电流阈值	R _{PROG} =10K	8	12	16	mA
		R _{PROG} =2K	40	60	80	mA
V_{PROG}	PROG 引脚电压	R _{PROG} =2K,电流模式	0.9	1.0	1.1	V
V_{CHRG}	CHRG引脚输出低电压	I _{CHRG} =5 mA		0.3	0.6	V
I _{CHRG}	CHRG引脚弱下拉电流	V _{CHRG} =5V	8	20	40	μΑ
ΔV_{RECHRG}	再充电电池阈值电压	V _{FLOAT} -V _{RECHRG}	70	100	150	mV
T _{LIM}	限定温度模式结温			115		$^{\circ}\!\mathbb{C}$
R _{ON}	功率 FET 导通电阻			800		mΩ
T _{SS}	软启动时间	I _{BAT} =0 至 I _{BAT} =1000V/R _{PROG}		20		uS
T _{RECHRG}	再充电比较器滤波时间	V _{BAT} 下降	1	2	3	mS
T_{TERM}	结束比较器滤波时间	I _{BAT} 降至 I _{CHG} /10 以下	1	2	3	mS
I _{PROG}	PROG 引脚上拉电流			1		μΑ

注 2: 典型参数值为 25℃条件下测得的标准参数值。

注 3: 规格书的最小、最大规范范围由测试保证,典型值由设计、测试或统计分析保证。

内部框图

工作原理

XW4054是专门为一节锂离子电池或锂聚合物电池而设计的线性充电器,芯片集成功率晶体管,充电电流可以用外部电阻设定,最大持续充电电流可达500mA,不需要另加阻流二极管和电流检测电阻。XW4054包含一个漏极开路输出的状态指示端,用于指示正在充电或充电完成。充电时管脚CHRG输出低电平,表示充电正在进行,充电完成后,CHRG下拉电流变为20uA。

如果电池电压低于2.9V,XW4054用小电流对电池进行预充电。当电池电压超过2.9V时,采用恒流模式对电池充电,充电电流由PROG管脚和GND之间的电阻R_{PROG}确定。当电池电压接近4.2V电压时,充电电流逐渐减小,XW4054进入恒压充电模式。当充电电流减小到充电结束阈值时,充电周期结束,CHRG端由强电流下拉变为20uA弱电流下拉。充电结束阈值是恒流充电电流的10%。

当电池电压降到再充电阈值4.1V以下时,XW4054自动开始新的充电周期。芯片内部的高精度电压基准源、误差放大器和电阻分压网络确保电池端调制电压的精度在1%以内,满足锂离子电池和锂聚合物电池的要求。当输入电压低于欠压锁定阈值电压或者输入电压低于电池电压时,充电器进入低功耗的睡眠模式,此时电池端消耗的电流小于2uA。

XW4054内部的智能温度控制电路在芯片的结温超过 115℃时自动降低充电电流,这个功能可以使用户最大限度的利用芯片的功率处理能力,不用担心因为过热而损坏芯片或者外部元器件。这样,用户在设计充电电流时,可以不用考虑最坏情况,而只是根据典型情况进行设计因为在最坏情况下,XW4054会自动减小充电电流。

引脚功能

CHRG(PIN1):充电状态指示端

当充电器向电池充电时,CHRG引脚被内部开关拉到低电平,表示充电正在进行;当充电结束时,CHRG下拉电流变为20uA;当V_{CC}输入电压低于欠压锁定阈值或V_{CC}与BAT管脚的电压差小于30mV时,CHRG管脚处于高阻态。

GND(PIN2):电源地

BAT(PIN3):电池正连接端

将电池的正端连接到此管脚。在芯片被禁止工作或者睡眠模式。BAT管脚的漏电流小于2uA,BAT管脚向电池提供充电电流和4.2V的限制电压。

Vcc(PIN4):输入电压正端

此管脚的电压为内部电路的工作电源。 V_{CC} 输入电压必须大于欠压锁定阈值且同时大于BAT电压100mV时,充电才会开始。当 V_{CC} 输入电压低于欠压锁定阈值或 V_{CC} 与BAT 管脚的电压差小于30mV时,XW4054将进入低功耗的停机模式,此时BAT管脚的消耗电流小于2uA。

PROG(PIN5):恒流充电电流设置端

从PROG管脚连接一个电阻到GND 可以对充电电流进行设定。设定电阻器和充电电流采用下列公式来计算: R_{PROG}=1000V/I_{BAT}

根据需要的充电电流I_{BAT}来确定电阻器R_{PROG}的阻值。在 涓流充电阶段,此管脚的电压被调制在 0.1V; 在恒流充 电阶段,此管脚的电压被固定在1V。

应用说明

充电终止

当充电电流在达到最终浮充电压之后降至设定值的1/10时,充电过程结束。该条件是通过采用一个内部滤波比较器对PROG引脚进行监控来检测的,当PROG引脚电压降至100mV以下的时间超过2ms时,充电终止。XW4054进入待机模式,此时输入电源电流降至30uA。

智能再充电

在待机模式中,XW4054对BAT 引脚电压进行监控,只有当BAT 引脚电压低于再充电阈值电压 4.1V 时(对应电池容量 80%~90%),才会开始新的充电循环,重新对电池进行充电,这就避免了对电池进行不必要的反复充电,有效延长电池的使用寿命。

增加热调节电阻

降低IC的 V_{CC} 与BAT两端的压降能够显著减少IC中的耗。在热调节时,这具有增加充电电流的作用。实现方式可以在输入电源与 V_{CC} 之间串联一个 0.3Ω 的功率电阻或正向导通压降小于0.5V的二极管,从而将一部分功率耗掉。

充电电流软启动

XW4054 内置了软启动路。当一个充电循环被启动时,充电电流将在20uS的时间从零逐渐上升至恒流充电电流。

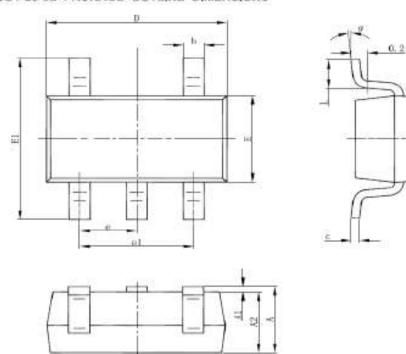
充电状态指示器

CHRG为漏极开路状态指示输出端,CHRG有3种状态指示,强电流下拉(约10mA),弱电流下拉(20uA),高阻态。当充电器处于充电状态时,CHRG被强拉到低电平,充电结束后,CHRG下拉电流变为20uA,当V_{CC}输入电压低于欠压锁定阈值或V_{CC}与BAT管脚的电压差小于30mV时,CHRG管脚处于高阻态。

如果不使用状态指示功能时,将CHRG浮空或接地。

智能温度控制

XW4054内部集成了智能温度控制功能,当芯片温度高于115℃时,会自动减小充电电流。该功能允许用户提高给定电路板功率处理能力的上限而没有损坏 XW4054的风险。在保证充电器将在最坏情况条件下自动减小电流的前提下,可根据典型(而不是最坏情况)环境温度来设定充电电流。


手动停机

如果使 PROG 引脚浮空,XW4054即被置于停机模式。 电池漏电流将降至1µA以下,且电源电流降至30µA以下

封装外形尺寸 <u>SOT23-5L</u>

SOT-23-5L PACKAGE OUTLINE DIMENSIONS

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Wax	Min	Wax
A	1.050	1.250	0.041	0.049
A1	0.000	0.100	0.000	0.004
A2	1.050	1.150	0.041	0.045
b	0.300	0.500	0.012	0.020
c	0.100	0.200	0.004	0.008
D	2.820	3.020	0.111	0.119
E	1.500	1.700	0.059	0.067
E1	2.650	2.950	0.104	0.116
e	0.950(BSC)		0.037(BSC)	
e1	1.800	2.000	0.071	0.079
L	0.300	0.600	0.012	0.024
8	0°	8°	0°	8"