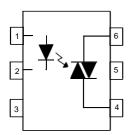


1. 概述

MOC302X系列器件中系由一个GaAs红外发光二极管和一个单晶硅芯片的随机相位光电双 向晶闸管组成的光电耦合器。


2.特点

- 峰值击穿电压 400V
- 输入和输出之间高隔离电压(Viso=5000 Vrms)
- 紧凑双列直插式封装
- 无铅,符合 RoHS 标准
- UL approved: UL1577, file No. E492440

3.典型应用

- 电磁阀控制
- 镇流器
- 静态交流电源开关
- 微处理器 115 到 240VAC 外设接口
- 白炽灯调光器
- 温度控制
- 电机控制

4. 结构原理图和封装

Pin Configuration

- 1. Anode
- 2. Cathode
- 3. No Connection
- 4. Terminal
- Substrate(do not connect)
- 6. Terminal

5. 极限参数 (T_A=25°C)

参数			符号	额定值	单位
	正向电流		I _F	60	mA
输入	反向电压		V_R	6	V
	功耗		P _D	100	mW
	额定值降低因子(在 Ta=85℃以上)			3.8	mW/°C
	断态输出端电压	MOC302X	V_{DRM}	400	V
输出	峰值重复浪涌电流(pw=100μs,120pps)		I _{TSM}	1	Α
	开启态电流(均方根值)		I _{T(RMS)}	100	mA
	功耗 额定值降低因子(在 Ta = 85°C 以上)		Pc	300	mW
				7.4	mW/°C
总功耗			Ptot	330	mW
隔离电压*			Viso	5000	Vrms
工作温度			Topr	-55~+100	°C
储存温度			Tstg	-55~+125	°C
焊接温度(10s)			Tsol	260	°C

^{*}在相对湿度 40~60%下的进行交流电测试,此时 1、2 和 3 脚短接,4、5 和 6 脚短接。

6. 产品特性参数(T_A=25°C, 除非有特别说明)

	参数		符号	条件	最小	典型	最大	单位
<i>t</i>	正向电压		V _F	I _F =20mA	-	1.18	1.5	V
输入	反向电流		I _R	V _R =6V	-	-	10	μΑ
	断态峰值电流		I _{DRM}	V _{DRM} = 额定 V _{DRM} , I _F = 0mA	-	-	100	nA
	通态峰值电压		V_{TM}	I _{TM} =100mA 峰值, I _F = 额定 I _{FT}	-	-	2.5	V
输出	断态电压临界 上升率	мОсзо2х	dv/dt	V _{PEAK} = 额定 V _{DRM} , I _F =0	-	100	-	V/μs
		MOC3020			1	-	30	
传输特性	LED 触发电流	MOC3021	I _{FT}	主端电压=3V	-	-	15	mA
		MOC3022			-	-	10	
		MOC3023			•	-	5	
	维持电流		I _H		-	250	-	μΑ

7.典型光电特性曲线图

图 1 LED 正向电压对正向电流曲线图

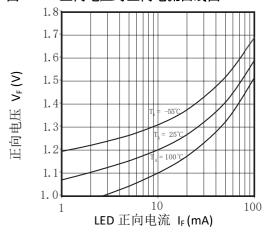


图 2 通态特性图

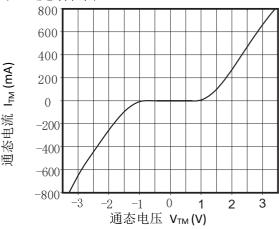


图 3 触发电流对环境温度曲线图

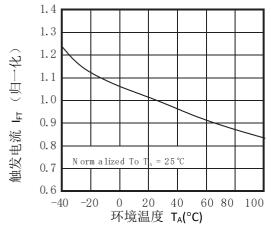


图 4 LED 触发电流对 LED 脉冲宽度曲线图

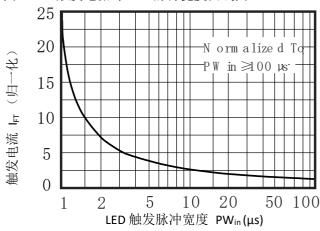


图 5 维持电流对温度曲线图

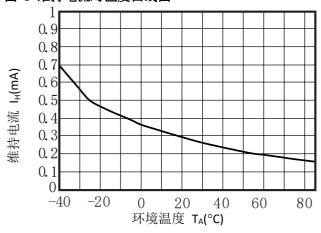
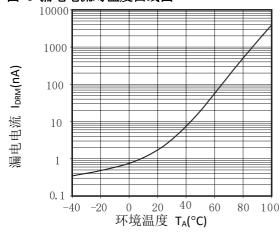
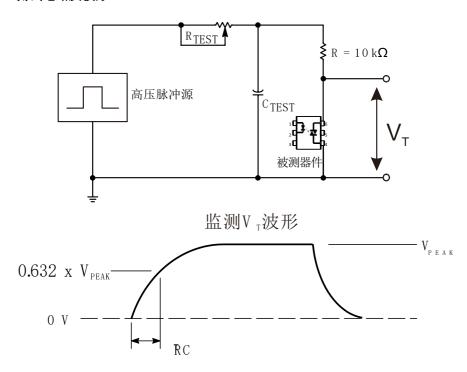
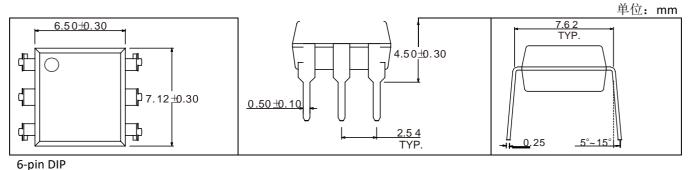




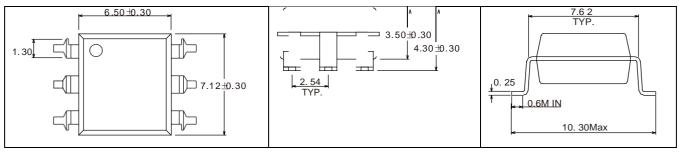
图 6 漏电电流对温度曲线图

图 7 静态 dv/dt 测试电路及波形

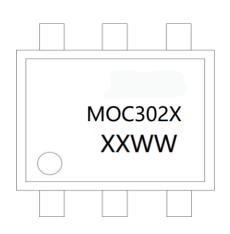
通过 RC 电路施加于被测器件的输出端的高电压脉冲设置到所需的 V_{PEAK} 值上。LED 电流无需加上。波形 V_{T} 使用 X100 探头监测。通过调节 R_{TEST} 值,dv/dt(斜度)增加,直到被测器件观察到被触发(波形崩溃)。dv/dt 然后下降,直到被测器件停止被触发。此时,记录 τ_{RC} 值并可计算 dv/dt 了。


$$dv/dt = \frac{0.632 \times V_{\text{MM}}}{\tau_{\text{m}}}$$

例如,对于 MOC302X 系列 V_{PEAK} = 400V。其 dv/dt 值如下计算得到:


$$dv/dt = \frac{0.632 \times 400}{\tau_{c}} = \frac{252}{\tau_{c}}$$

8. 外形尺寸

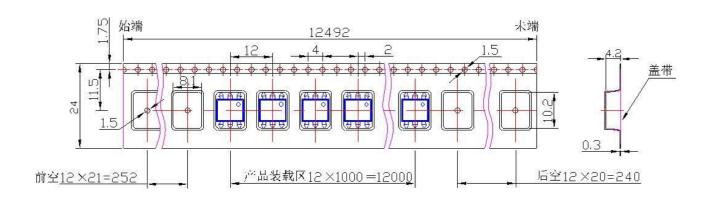


o-pili bir

6-pin SOP

9.印字

- 第二行印字中"X" 代表I_{FT}数位: 0/1/2/3
- 第三行印字中"XX" 代表年份
- 第三行印字中"WW"代表周期


10.订单信息

型号	封装	最小包装数量	包装方式
MOC302XM	DIP-6	3250	盒
MOC302XSM	SOP-6	1000	盘

- SOP-6 编带包装
- 1) 示意图:

