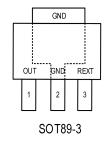
SM2082GJ

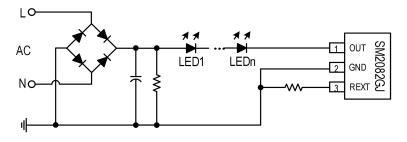
特点

- ◆ 本司专利的恒流控制技术
 - a) OUT 端口输出电流外置可调
 - b) 芯片间输出电流偏差<±4%
- ◆ 输入电压: 120Vac/220Vac
- ◆ 支持可控硅调光应用电路
- ◆ 具有过温调节功能
- ◆ 芯片可与 LED 共用 PCB 板
- ◆ 线路简单、成本低廉
- ◆ 封装形式: SOT89-3

应用领域

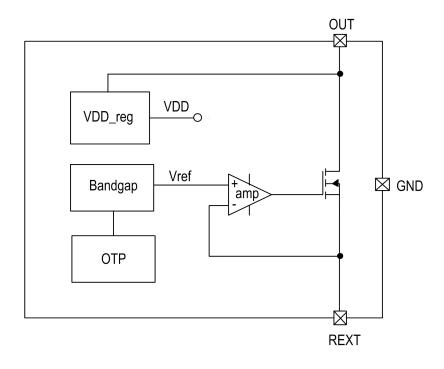

- ◆ 灯丝灯
- ◆ LED 球泡灯, 筒灯
- ◆ 其它 LED 照明应用

概述


SM2082GJ 是一款单通道 LED 线性恒流控制芯片,芯片使用本司 专利的恒流设定和控制技术,输出电流由外接 Rext 电阻设置,且输出电流不随芯片 OUT 端口电压而变化,具有较好的恒流性能。系统结构简单,外围元件极少,方案成本低。

芯片集成了过温调节功能,当芯片内部达到过温调节点时,芯片将会自动减小输出电流,起到保护IC的功能,提高应用可靠性。

管脚图



典型应用

备注: 上图电源可以是交流电源,也可为直流电源。

内部功能框图

管脚说明

管脚序号	管脚名称	管脚说明
1	OUT	电源输入与恒流输出端口
2	GND	芯片地
3	REXT	输出电流值设置端口

订购信息

 订购型号	 封装形式	包装	卷盘尺寸	
1 网至 5	到表形式	管装	编带	位 位 八 寸
SM2082GJ	SOT89-3	1	4000 只/盘	13 寸

极限参数 (注1)

若无特殊说明, TA=25°C。

符号	说明	范围	单位
V _{OUT}	OUT 端口电压	-0.5~500	V
V _{REXT}	REXT 端口电压	-0.5~8	V
RθJA	PN 结到环境的热阻(注 2)	105	°C/W
P _D	功耗 (注3)	1	W
TJ	工作结温范围	-40~150	°C
T _{STG}	存储温度范围	-55~150	°C
V _{ESD}	HBM 人体放电模式	2	KV

- 注 1: 最大输出功率受限于芯片结温,最大极限值是指超出该工作范围,芯片有可能损坏。在极限参数范围内工作,器件功能正常,但并不完全保证满足个别性能指标。
- 注 2: RθJA 在 T_A=25°C 自然对流下根据 JEDEC JESD51 热测量标准在单层导热试验板上测量。
- 注 3: 温度升高最大功耗一定会减小,这也是由 T_{JMAX} , $R\theta JA$ 和环境温度 T_A 所决定的。最大允许功耗为 P_D = $(T_{JMAX}-T_A)/$ $R\theta JA$ 或是极限范围给出的数值中比较低的那个值。

电气工作参数(注4、5)

若无特殊说明, TA=25°C。

符号	说明	条件	最小值	典型值	最大值	单位
V _{OUT_MIN}	恒流拐点	I _{оит} =30mA	-	7	-	٧
V _{OUT_BV}	OUT 端口耐压	-	500	-	-	V
I _{OUT}	OUT 输出电流(注6)	-	5	-	60	mA
I _{DD}	静态电流	$V_{OUT}=20V$, $V_{REXT}=1V$	0110	0.162	0.210	mA
V_{REXT}	REXT 端口电压	V _{OUT} =15V,REXT=30R	0.576	0.600	0.624	V
D _{IOUT}	IOUT 片间偏差	I _{оит} =30mA	-	±4	-	%
T _{SC}	电流负温度补偿起始点(注7)	-	-	145	-	°C

- 注 4: 电气工作参数定义了器件在工作范围内并且在保证特定性能指标的测试条件下的直流和交流电参数。对于未给定上下限值的参数,该规范不予保证其精度,但其典型值合理反映了器件性能。
- 注 5: 规格书的最小、最大参数范围由测试保证,典型值由设计、测试或统计分析保证。
- 注 6: 最大电流是芯片允许通过的最大电流值,根据实际的散热条件,需要预留 10%~20%的余量。
- 注 7: 电流负温度补偿起始点为芯片内部设定温度 145℃。

功能表述

SM2082GJ 是一款单通道 LED 线性恒流控制芯片,芯片使用本司专利的恒流设定和控制技术,输出电流由外接 Rext 电阻设置,最大电流可达 55mA,且输出电流不随芯片 OUT 端口电压而变化,具有较好的恒流性能。芯片集成了过温调节功能,当芯片内部达到过温调节点时,芯片将会自动减小输出电流,起到保护 IC 的功能,提高应用可靠性。

◆ 输出电流

SM2082GJ 的 OUT 端口输出电流计算公式:
$$I_{OUT} = \frac{V_{REXT}}{Rext} = \frac{0.6V}{Rext(\Omega)}$$
 (A) °

◆ 效率设计

系统工作效率为:

$$\eta = \frac{P_{\text{LED}}}{P_{\text{IN}}} = \frac{n * V_{\text{LED}} * I_{\text{LED}}}{V_{\text{IN}} * I_{\text{LED}}} = \frac{n * V_{\text{LED}}}{V_{\text{IN}}}$$

其中 V_{IN} 是系统输入电源电压, V_{LED} 是单个 LED 工作电压降, I_{LED} 是 LED 平均电流。可看出系统串联的 LED 数量 n 越大,系统工作效率越高。系统设计过程中,需根据应用环境调整 SM2082GJ 的 OUT 端口工作电压,优化n值。

◆ LED 串联数量设计

系统串接的 LED 数量设计需考虑以下两个方面:

- 1) OUT 端口电压 Vout = Vin n*VLED, 为保证芯片正常工作,需保证 OUT 端口电压 Vout ≥ Vout MIN;
- 2) 芯片 OUT 端口电压越低,系统工作效率越高。

综合以上两点,系统串接的 LED 数量 n 计算为:

$$n \, = \, \frac{V_{IN} \, - \, V_{OUT}}{V_{IED}}$$

◆ 芯片散热措施

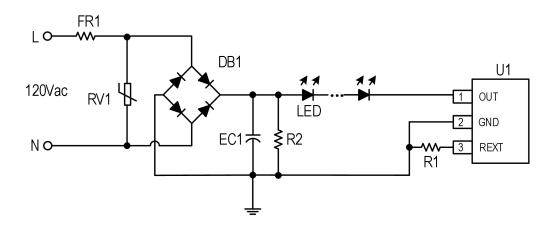
SM2082GJ 芯片内部有温度补偿电路,为避免芯片温度高引起掉电流现象,系统需有良好的散热处理,确保SM2082GJ 芯片工作在合理的温度范围,常见散热措施如下:

- 1) 系统采用铝基板;
- 2) 增大 SM2082GJ GND 铺铜面积;
- 3) 增大整个灯具的散热底座;

SM2082GJ 支持芯片并联应用方案。若系统输出功率过大导致芯片温度高时,可以采用多颗 SM2082GJ 芯片并联使用。

◆ 过温调节功能

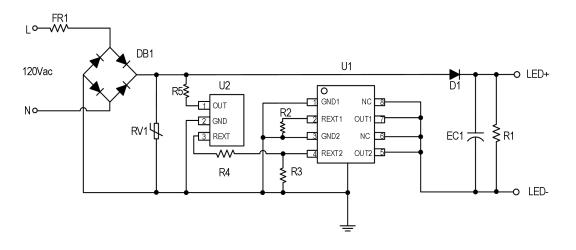
当 LED 灯具内部温度过高,会引起 LED 灯出现严重的光衰,降低 LED 使用寿命。SM2082GJ 集成了温度补偿功能,当芯片内部达到 145℃ 过温点时,芯片将会自动减小输出电流,以降低灯具内部温度。


业务电话: 400-033-6518

典型应用方案

◆ 方案一

SM2082GJ 灯丝灯无频闪应用方案(4W)

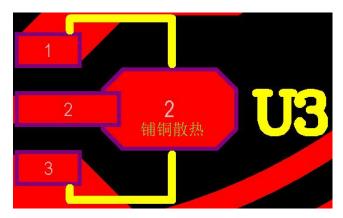

BOM 单

位号	参数	位号	参数	位号	参数
FR1	10R/0.5W	R1	24R/0805	U1	SM2082GJ
RV1	0805SV241-201A	R2	1M/1206	LED	130V 灯丝灯
DB1	MB6F	EC1	10uF/200V		

- 1. LED 灯串电压建议控制在 130V 到 140V 之间,系统工作最优化。
- 2. 通过改变 R1 电阻值,调整输出工作电流值。
- 3. RV1 为抗雷击器件,可提高系统可靠性,可根据客户需求是否保留。

◆ 方案二

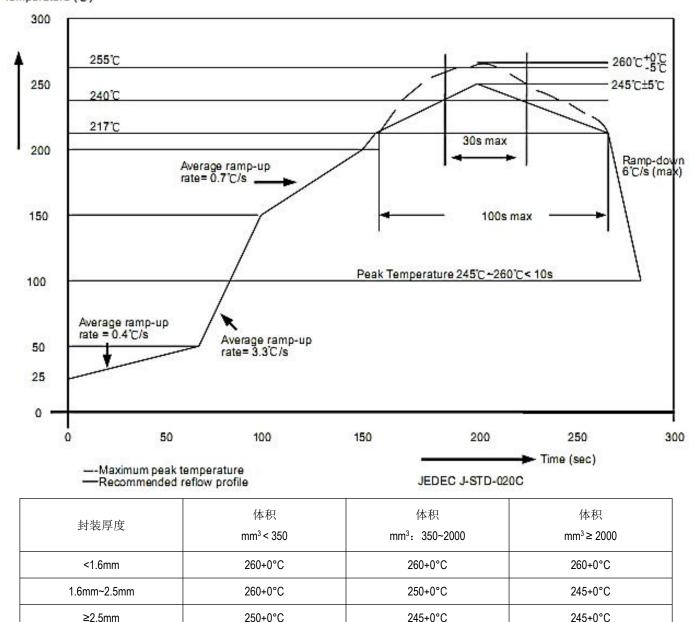
SM2082EM+SM2082GJ 可控硅调光应用方案 (4W)


BOM 单

位号	参数	位号	参数	位号	参数
FR1	10R/0.5W	R2、R3	24R/0805	D1	E1J
RV1	0805SV241-201A	R4	16R/0805	U1	SM2082EM
DB1	MB6F	R5	4.3K/2512	U2	SM2082GJ
R1	300K/0805	EC1	6.8uF/160V		

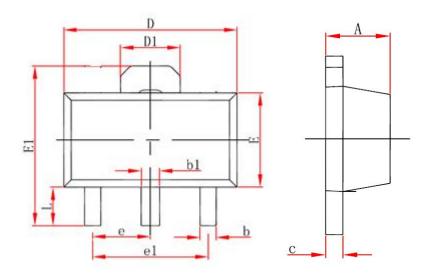
- 1. LED 灯串电压建议控制在 120V 到 130V 之间,系统工作最优化。
- 2. 通过改变 R2、R3 电阻值,调整输出工作电流值,改变 R3、R4 电阻值,调整泄放电流值。
- 3. R5 为 1W 的功率电阻,用于降低 U2 SM2082GJ 的功耗。

PCB layout 注意事项


- (1) IC 衬底与 PCB 需要采用锡膏工艺,保证 IC 衬底与 PCB 接触良好,IC 衬底禁止使用红胶工艺。
- (2) 系统实际输出功率与 PCB 板及灯壳本身散热情况有关,实际应用功率需匹配散热条件。
- (3) IC 衬底部分进行铺铜处理,进行散热,增加可靠性,铺铜如上图所示。

封装焊接制程

明微电子所生产的半导体产品遵循欧洲 RoHs 标准,封装焊接制程锡炉温度符合 J-STD-020 标准。


Temperature ('C)

封装形式

SOT89-3

Symbol	Min(mm)	Max(mm)	
A	1.3	1.8	
b	0.2	0.7	
b 1	0.25	0.75	
С	0.2	0.6	
D	4.3 4.8		
E	2.2	2.8	
E1	3.8	4.5	
D1	1.55(REF)		
е	1.5(TYP)		
e 1	3.0(TYP)		
L	0.8 1.5		

说明书修订记录

日期	说明书版本	修订内容简介
2021-12-10	QBOIZIV1.0	说明书初版
2023-03-16	QBOIZWV1.1	修订电气参数,P3

业务电话: 400-033-6518

使用权声明

明微电子对于产品、文件以及服务保有一切变更、修正、修改、改善和终止的权利。针对上述的权利,客户在 进行产品购买前,建议与明微电子业务代表联系以取得最新的产品信息,所有技术应用需要严格按照最新产品说明 书进行设计。

明微电子的产品,除非经过明微合法授权,否则不应使用于医疗或军事行为上,若使用者因此导致任何身体伤害或生命威胁甚至死亡,明微电子将不负任何损害赔偿责任。

此份文件上所有的文字内容、图片及商标为明微电子所属之智慧财产。未经明微合法授权,任何个人和组织不得擅自使用、修改、重制、公开、改作、散布、发行、公开发表等损害本企业合法权益。对于相关侵权行为,本企业将立即全面启动法律程序,追究法律责任。