HLF

FEATURES

- Efficiency
- Input voltage range
- Withstanding input voltage surge
- Output current range
- String of LEDs
- Constant-current LED driver
- Linear and PWM dimming capability

APPLICATIONS

- DC/DC or AC/DC LED driver
- RGB backlighting LED driver
- Backlighting of flat panel displays
- General-purpose constant current source
- Signage and decorative LED lighting
- Automotive
- Chargers
>90\%
- Chargers

10 V to 600 V
up to 600V
a few mA to more than 1A
1 pc to several hundreds

DESCRIPTION

The 9910 is a PWM high-efficiency LED driver control IC. It allows efficient operation of highbrightness (HB) LEDs from 10VDC up to 600VDC voltage sources. The circuit controls an external MOSFET at fixed switching frequencies up to 300 kHz . The frequency can be programmed by using a single resistor. The device peculiarity is that a LED string is driven at a constant current rather than at a constant voltage, thus providing a constant light output and an enhanced reliability. The output current can be programmed between a few milliamps and up to more than 1.0A. A rugged high-voltage junction isolated process was used and enabled the device to withstand an input voltage surge up to 600V. The output current to a LED string is programmable to any value between zero and its maximum value by applying an external control voltage to the linear dimming control input. To allow the device to accept an external control signal with a duty ratio of 0 to 100% and a frequency of up to a few kilohertz the circuit has a low-frequency PWM dimming input.

TYPICAL APPLICATION CIRCUIT

ABSOLUTE MAXIMUM RATINGS

Vin to GND
-0.5 V to +600 V
CS, LD, PWM_D, GATE to GND
Continuous power dissipation ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$) (Note 1) 8 -pin DIP (derate $9 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+25^{\circ} \mathrm{C}$)
8 -pin SO-8 (derate $6.3 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+25^{\circ} \mathrm{C}$)
Operating temperature range
Junction temperature
-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$

Storage temperature range
900 mW
630 mW
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$+125^{\circ} \mathrm{C}$

Stresses beyond those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications are not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS
($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless noted otherwise)

SYMBOL	DESCRIPTION	MIN	TYP	MAX	UNITS	CONDITIONS
$\mathrm{V}_{\text {INDC }}{ }^{1}$	Input DC supply voltage range	10.0		600	V	DC input voltage
IINSD	Shut-down mode supply current	0.5		1	mA	Pin PWM_D to GND, $\mathrm{V}_{\text {IN }}=8 \mathrm{~V}$
$V_{D D}$	Internally regulated voltage	7.0	7.5	8.0	V	$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V} \text { to } 600 \mathrm{~V}, \mathrm{I}_{\mathrm{DD}(\text { ext })}=0,$ pin GATE is open
$\Delta V_{\text {DD }}$, load	$V_{\text {DD }}$ load regulation	0	-	100	mV	$\mathrm{I}_{\mathrm{DD}(\text { ext })}=0$ to $1.0 \mathrm{~mA}, 500 \mathrm{pF}$ at GATE; Rosc $=226 \mathrm{kOhm}$, PWM_D = VDD
$\mathrm{V}_{\mathrm{DD} \text {, max }}$	Maximal pin V_{DD} voltage			10.0	V	When an external voltage is applied to pin V_{DD}
$\mathrm{I}_{\text {DD(ext) }}$	$\mathrm{V}_{\text {DD }}$ current available for external circuitry			0.7	mA	$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$ to 100 V
UVLO	V_{DD} undervoltage lockout threshold	$0.87 * V_{\text {DD }}$	$0.89 * V_{\text {DD }}$	$0.91{ }^{*} \mathrm{~V}_{\mathrm{DD}}$	\%	Rising $\mathrm{V}_{\text {IN }}$
$\Delta \mathrm{UVLO}$	$V_{D D}$ undervoltage lockout hysteresis		500		mV	Falling V_{IN}
$\mathrm{V}_{\mathrm{EN}(10)}$	Pin PWM_D input low voltage			0.8	V	$\mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}$ to 600 V
$\mathrm{V}_{\text {EN(hi) }}$	Pin PWM_D input high voltage	2.0			V	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V}$ to 600 V
$\mathrm{R}_{\text {EN }}$	Pin PWM_D pull-down resistance	50	100	150	kOhm	$\mathrm{V}_{\mathrm{EN}}=5 \mathrm{~V}$
$\mathrm{dV}_{\text {cs }}$	Accuracy of Current Sense threshold voltage at wafer testing	-2.4\%	0	2.4\%	\%	
$\mathrm{V}_{\text {CS(hi) }}$	Current sense pull-in threshold voltage	238	250	262	mV	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\text {GATE(hi) }}$	GATE high output voltage	$\mathrm{V}_{\mathrm{DD}}-0.3$		$V_{D D}$	V	l OUt $=10 \mathrm{~mA}$
$\mathrm{V}_{\text {GATE(}}$ (0)	GATE low output voltage	0		0.3	V	$\mathrm{I}_{\text {OUT }}=-10 \mathrm{~mA}$
fosc	Oscillator frequency	$\begin{aligned} & 20 \\ & 80 \end{aligned}$	$\begin{gathered} 25 \\ 100 \end{gathered}$	$\begin{gathered} 30 \\ 120 \end{gathered}$	kHz	$\begin{aligned} & \text { Rosc }=1.00 \mathrm{MOhm} \\ & \text { Rosc }=226 \mathrm{kOhm} \end{aligned}$
Dmax hf	Maximum oscillator PWM duty cycle			100\%		$\mathrm{F}_{\text {Pwm }}$ hf $=25 \mathrm{kHz}$, at GATE, CS to GND
VLD	Pin LD (linear dimming) voltage range	0		250	mV	$\mathrm{T}_{\mathrm{A}}=<85^{\circ} \mathrm{C}, \mathrm{V}_{\text {IN }}=12 \mathrm{~V}$
Tblank	Current sense blanking interval	150	215	280	ns	$\mathrm{V}_{\mathrm{CS}}=0.55 \mathrm{~V}_{\text {LD }}, \mathrm{V}_{\text {LD }}=\mathrm{V}_{\mathrm{DD}}$
$t_{\text {DeLA }}$	Delay from CS to GATE lo			300	ns	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{LD}}=0.15, \mathrm{~V}_{\mathrm{CS}}=0 \\ & \text { to } \\ & 0.22 \mathrm{~V} \text { after } \mathrm{T}_{\text {BLANK }} \end{aligned}$
$\mathrm{t}_{\text {RISE }}$	GATE output rise time	30		50	ns	$\mathrm{C}_{\text {GATE }}=500 \mathrm{pF}, \mathrm{V}_{\mathrm{DD}}=7.5 \mathrm{~V}$
$\mathrm{t}_{\text {FALL }}$	GATE output fall time	30		50	ns	$\mathrm{C}_{\text {GATE }}=500 \mathrm{pF}, \mathrm{V}_{\text {DD }}=7.5 \mathrm{~V}$

Note:

1. Also limited by package power dissipation limit, whichever is lower.

HLF

BLOCK DIAGRAM

Application Note

Oscillator

The oscillator in the 9910 is controlled by a single resistor connected at the RT pin. The equation governing the oscillator time period $\mathrm{t}_{\mathrm{osc}}$ is given by:

$$
\mathrm{t}_{\mathrm{osc}}(\mu \mathrm{~s})=\frac{\mathrm{R}_{\mathrm{T}}(\mathrm{k} \Omega)+22}{25}
$$

If the resistor is connected between RT and GND, 9910 operates in a constant frequency mode and the above equation determines the time-period. If the resistor is connected between RT and GATE, the 9910 operates in a constant off-time mode and the above equation determines the offtime.

Current Sense Resistor

The formula for calculation of Iled for 9910 in typical application circuit is:

$$
\mathrm{R}_{\mathrm{CS}}=\frac{0.25 \mathrm{~V}\left(\mathrm{or} \mathrm{~V}_{\mathrm{LD}}\right)}{1.15 \cdot \mathrm{I}_{\mathrm{LED}}(\mathrm{~A})}
$$

9910PAD LOCATION

Chip size: $1.35 \mathrm{~mm} \times 1.50 \mathrm{~mm}$

Pad Name	Pad Centre		Pad Size (Passivation)	
	\mathbf{X}	\mathbf{Y}	\mathbf{X}	\mathbf{Y}
Vin	280	1210		
CS	115	870	92	92
GND	145	696	92	92
GATE	145	545	92	92
PWM_D	145	392	92	92
VDD	632	116	92	92
LD	808	142	92	92
Rosc	1185	160	92	92

9910 BONDING DIAGRAM DIP-8 Package

(Bottom view)

The appearance complies with the requirements of the company standards.

