

6.6V Fixed Over Voltage and Over Current Protector

with 38V Input Withstand Voltage

FEATURES

- Input Operation Voltage Range: 2.7V to 38V
- Low R_{ds(on)}: 150mΩ typical
- Internal Input OVP Threshold: 6.6V typical
- Internal Output Voltage Clamp Threshold: 5.7V typi-cal
- Logic-Level Enable Input.
- OVP Response Time: 100ns typical
- Power on Delay Time: 18ms typical
- . Internal Over Current Protection
- Output Short Protection
- Output Auto Discharge Function
- Thermal Shutdown Protection
- . TMI6402T: DFN1.6x1.6-6 Package

GENERAL DESCRIPTION

The TMI6402T is an over voltage and over current protector. Input withstand voltage is up to 38V. It has 6.6V typical OVP threshold and 100ns fast OVP response time. The OCP threshold is larger than 1.2A for the application with 1A output current. The TMI6402T also include output short protection and thermal shutdown function protect the device against over current and high junction temperature.

TMI6402T is available in a space saving DFN1.6x1.6-6 package.

APPLICATIONS

- Portable Media Devices
- . Digital Cameras
- GPS and Navigation Equipment
- USB Port Input Protectors
- Storage and SSD Devices

TYPICAL APPILCATION

Figure 1. Typical Application Circuits

TMI and SUNTO are the brands of TOLL microelectronic .

TMÍ | SUNTO

ABSOLUTE MAXIMUM RATINGS (Note 1)

Parameter	Min	Max	Unit
Input, EN Supply Voltages	-0.3	40	V
VOUT Voltages	-0.3	10	V
Storage Temperature Range	-65	150	°C
Junction Temperature (Note 2)	-40	150	°C
Power Dissipation		1500	mW
Lead Temperature Soldering, 10sec		260	°C

PIN CONFIGURATION

(Top View)

Top Mark: TDPxxx (TDP: Device Code, xxx: Inside Code)

Part Number	Package	Top Mark	Quantity/Reel
TMI6402T		6-6 TDP 300	2000
	DFN1.0X1.0-0	xxx	5000

TMI6402T devices are Pb-free and RoHS compliant.

PIN FUNCTIONS

Pin	Name	Function				
1	VIN	Power Supply Input				
2	GND	Ground pin.				
3	EN	hip Enable Pin, Logic-low turns on power switch.				
4	NC	No Composition Keep the NC wine floating and as external composition				
5 NC		No connection. Keep the NC pins floating and no external connection.				
6	VOUT	Output Voltage Pin.				

ESD RATING

Items	Description	Value	Unit	
V _{ESD_HBM}	Human Body Model for all pins	±2000	V	
V _{ESD_CDM}	Charge Device Model for all pins	±1000	V	

JEDEC specification JS-001

RECOMMENDED OPERATING CONDITIONS

Items	Description	Min	Max	Unit
Voltage Range	IN	2.7	38	V
TJ	Operating Junction Temperature Range	-40	125	°C
Ι _{ουτ}	Output Current	0	1	А

THERMAL RESISITANCE (Note 3)

Items	Description		Unit
θ _{IA}	Junction-to-ambient thermal resistance	140	°C/W
θ」	Junction-to-case(top) thermal resistance	42	°C/W

ELECTRICAL CHARACTERISTICS

(V_{IN}=5V, T_A = 25°C, unless otherwise noted.)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Input Voltage Range	V _{IN}		2.7		38	V
Input UVLO Threshold	V _{UVLO_R}	V _{IN} Rising		2.5		V
Input UVLO Hysteresis	V _{UVLO_H}			0.25		V
Input OVP Threshold	V _{OVP_R}	V _{IN} Rising	6.3	6.65	7	V
Input OVP Hysteresis	V _{OVP_H}			250		mV
Output Clamp Voltage	Vo_clamp	I _{OUT} =0A	5.4	5.8	6.2	v
Input OVP Response Time _(Note 4)	t _{OVP}	V_{IN} > V_{OVP_R} to MOSFET turns off		100	200	ns
Operation Input Current	I _{IN_5V}	V _{IN} =5V, I _{OUT} =0A		80	120	μΑ
Operation input current	I _{IN_38V}	V _{IN} =38V, I _{OUT} =0A		155		μΑ
Output Start Time	t _{start}	Time from V_{out} =0.5V to 4.5V		110		μs
Power on Delay Time	t _{ON_Delay}	Time from $V_{IN} > V_{UVLO_R}$ to V_{OUT} start rising		18		ms
Switch On-Resistance	R _{ds(on)}	V _{IN} =5V, I _{OUT} =1A, T _A =25°C		150		mΩ
Over Current Limit	I _{OCP}		1.2	1.7		А
Over Current Protect Deglitch Time _(Note 4)	tocp	Time from I _{OUT} >I _{OCP} to MOSFET turns off		30		ms
Over Current Recovery Time _(Note 4)	t _{ocp_r}	Time from OCP to V _{OUT} start rising		1		S
Output Short Current Limit(Note 4)	l _{sc}	MOSFET is turning on		7		А
Output Short Protect Deglitch	tu	Time from I _{OUT} >I _{sc} to		1		
Time _(Note 4)	LSC	MOSFET turns off				μs
Output Auto Discharge Current	I _{O_DIS}	V _{IN} =7V, V _{OUT} =5V		3.8		mA
Thermal Shutdown Threshold (Note 4)	Тотр			165		°C
Thermal Shutdown Hysteresis (Note 4)	Тотр_н			30		°C

Note 1: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired. **Note 2:** T_J is calculated from the ambient temperature T_A and power dissipation P_D according to the following formula: $T_J = T_A + (P_D) \times \theta_{JA}$.

Note 3: Measured on JESD51-7, 2-layer PCB.

Note 4: Guaranteed by design.

FUNCTION DESCRIPTION

Input Under-Voltage-Lock-Out and Power On

The TMI6402T is an over voltage and over current protector with 38V withstand input voltage. The input voltage range is 2.7V to 38V. When VIN voltage is higher than under voltage lockout rising threshold V_{UVLO_R} , the device could be turned on and the output of the device start rising after typical 18ms delay time. The output start on time is about 110µs typically. When VIN voltage is lower than under voltage lockout rising threshold minus UVLO hysteresis, the device is turned off and internal timer is cleared.

Input Over Voltage Protection and Output Voltage Clamp

TMI6402T has input over voltage protection and output voltage clamp function to prevent output from high voltage damage. When input voltage of TMI6402T is higher than V_{UVLO_R} , the internal MOSFET is turned on and the output voltage is following input voltage. When output voltage is higher than 5.8V output voltage clamp threshold, output voltage is clamped to 5.8V. If input voltage keeps rising and higher than typical 6.6V input OVP threshold V_{OVP_R} , the inner MOSFET is turned off with fast response time. When input voltage is decreasing lower than input OVP threshold minus OVP hysteresis, the inner MOSFET is turned on and output voltage restart again after 18ms delay time.

Over Current Protection and Output Short Protection

The device has over current protection and output short protection function to protect over current condition or output short condition. When the current flowing through the device is larger than over current limitation I_{OCP} and the OCP duration time is larger than t_{OCP} 30ms typical, the MOSFET is turned off immediately. After typical 1s OCP recovery time, the MOSFET restart turning on automatically. if the over current is continuous, the MOSFET is turned off again.

The OCP deglitch time avoid the MOSFET is turned off unexpectedly in load current transient condition, however, it cannot turn off MOSFET during output short condition with large short current. TMI6402T adds the second output short protection to prevent short current. If the short current is larger than I_{SC} , the MOSFET is turned off within 1µs to shut off short current. After short current protection, the MOSFET is turned on and output restart automatically after 18ms power on delay time.

In application with large output capacitor, inrush current is produced during MOSFET powers on. The over current protection of TMI6402T limits capacitance on output side during the power on process.

Thermal Shutdown Protection

The device also has thermal shutdown function. It can protect the device against thermal damage due to high junction temperature. When the device junction temperature is higher than thermal shutdown threshold, the MOSFET is turned off immediately, and when junction temperature drops thermal shutdown hysteresis value, the MOSFET turns on again.

TMI and SUNTO are the brands of TOLL microelectronic.

TMI6402T

Output Discharge Function

The device has output discharge function with about 3.8mA discharge current from output to GND when MOSFET is turned off after input over voltage protection, over current protection, output short protection and thermal shutdown protection.

FUNCTIONAL BLOCK DIAGRAM

TYPICAL PERFORMANCE CHARACTERISTICS

Over Current Protection

Input OVP Response V_{IN} transient from 5.9V to 8V, No load

2

PACKAGE INFORMATION

DFN1.6x1.6-6

Unit: mm

Symbol	Dimensions In Millimeters			Symbol	Dimensions In Millimeters		
Symbol	Min	Тур	Max		Min	Тур	Max
А	0.70	0.75	0.80	D	1.5	1.6	1.65
A1	0.00	0.03	0.05	е	0.50 TYP		
b	0.20	0.25	0.30	E	1.5	1.6	1.65
С	0.203 REF			L	0.23	0.275	0.33

Note:

1) All dimensions are in millimeters.

TAPE AND REEL INFORMATION

TAPE DIMENSIONS:

REEL DIMENSIONS:

Note:

- 1) All Dimensions are in Millimeter
- 2) Quantity of Units per Reel is 3000
- 3) MSL level is level 3.